Review
BibTex RIS Cite

Neurodevelopment Of The Peripheral Vestibular System And Genetic Factors Affecting Development

Year 2024, Volume: 9 Issue: 3, 575 - 587, 31.12.2024
https://doi.org/10.25279/sak.1196572

Abstract

Our vestibular system is known to provide information about the individual's entire body position, position and movement in space, and to form a reference to our other sensory systems with this information. Although it has an important effect on balance, coordination and visual control, studies have shown that the vestibular system is also related to many areas such as blood pressure, muscle tone, attention, danger awareness and sense of confidence. In this study, the prenatal and postnatal developmental stages of the peripheral vestibular system in mice and humans and studies determining the genetic factors affecting these stages were compiled.

References

  • Araman, Z., & Sari Gokten, E. . (2022). Evaluation of gravitational ınsecurity in school-age children diagnosed with learning disorder. International Journal Of Scientific Research and Management, 10 (03), 581–592. https://doi.org/10.18535/ijsrm/v10i03.mp03.
  • Barald, K.F. & Kelley, M. W. (2004). From placode to polarization: new tunes in inner ear development. Development; 131 (17), 4119–4130. https://doi.org/10.1242/dev.01339
  • Bigelow, R. T., & Agrawal, Y. (2015). Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory. Journal of Vestibular Research, 25(2), 73-89. https://doi.org/10.3233/ves -150544.
  • Bok, J., Dolson, DK., Hill, P., Rüther, U., Epstein, DJ. and Wu, DK. (2007). Opposing gradients of Gli repressor and activators mediate Shh signaling along the dorsoventral axis of the inner ear. Development. 134(9), 1713-22. https://doi.org/10.1242/dev.000760.
  • Bok, J., Raft, S., Kong, KA., Koo, SK., Drager, UC., and Wu, DK. (2011). Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proc Natl Acad Sci 108: 161–166. https://doi.org/10.1073/pnas.1010547108.
  • Bok, J., Zenczak, C., Hwang, C. H., and Wu, D. K. (2013). Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proceedings of the National Academy of Sciences, 110(34), 13869-13874. https://doi.org/10.1073/pnas.1222341110.
  • Bruska, M., Ulatowska-Błaszyk, K., Weglowski, M., Woźniak, W., & Piotrowski, A. (2009). Differentiation of the facial-vestibulocochlear ganglionic complex in human embryos of developmental stages 13–15. Folia Morphologica, 68(3), 167-173. https://pubmed.ncbi.nlm.nih.gov/19722161/.
  • Burns, J. C., & Stone, J. S. (2017). Development and regeneration of vestibular hair cells in mammals. In Seminars in cell & developmental biology. Academic Press, 65:96-105. https://doi.org/10.1016/j.semcdb.2016.11.001.
  • Carlson, N., (2011) . Fizyolojik psikoloji davranışın nörolojik temelleri (Foundations of behavioral neuroscience), Nobel Yayınevi.
  • Casale, J., Browne, T., Murray, I., & Gupta, G. (2018). Physiology, Vestibular system, StatPearls Publishing.
  • Çöpkes, Ü. (2013). Otistik çocuklarda vestibüler rehabilitasyonun etkisi (Master's thesis, İstanbul Bilim Üniversitesi, Sağlık Bilimleri Enstitüsü.). http://acikerisim.demiroglu.bilim.edu.tr:8080/xmlui/handle/11446/143.
  • Dechesne, C. J., & Sans, A. (1985). Development of vestibular receptor surfaces in human fetuses. American Journal of Otolaryngology, 6(5), 378-387. https://doi.org/10.1016/s0196-0709(85)80016-8.
  • Dechesne, C. J., Desmadryl, G., & Dememes, D. (1987). Myelination of the mouse vestibular ganglion. Acta Oto-Laryngologica, 103(1-2), 18-23. https://doi.org/10.3109/00016488709134693.
  • Desmadryl, G. (1991). Postnatal developmental changes in the responses of mouse primary vestibular neurons to externally applied galvanic currents. Brain Research. Developmental Brain Research, 64, 137–143. https://doi.org/10.1016/0165-3806(91)90217-7.
  • Desmadryl, G., Raymond, J., & Sans, A. (1986). In vitro electrophysiological study of spontaneous activity in neonatal mouse vestibular ganglion neurons during development. Brain Research, 390, 133. https://doi.org/10.1016/0165-3806(86)90160-4.
  • Eatock, R. A. and Songer, J. E. (2011). Vestibular hair cells and afferents: two channels for head motion signals, Annu. Rev. Neurosci. 34, 501-534. https://doi.org/10.1146/annurev-neuro-061010-113710.
  • Eggers, S. D., & Zee, D. S. (2010). Overview of vestibular and balance disorders. Handbook of Clinical Neurophysiology, s:5.
  • Freeman, S., Plotnik, M., Elidan, J., and Sohmer, H. (1999). Development of short latency vestibular evoked potentials in the neonatal rat. Hear. Res. 137, 51–58. https://doi.org/10.1016/S0378-5955(99)00137-9.
  • Fritzsch, B., Barald, K. F., & Lomax, M. I. (1998). Early embryology of the vertebrate ear. In R. R. Fay (Ed.), Development of the auditory system. New York: Springer. 81–146. https://link.springer.com/chapter/10.1007/978-1-4612-2186-9_3.
  • Guidetti, G. (2013). The role of cognitive processes in vestibular disorders. Hearing, Balance and Communication, 11, 3–35. https://doi.org/10.3109/21695717.2013.765085
  • Hanes, D.A. (2012). Mathematical requirements of visual–vestibular integration. J. Math. Biol. 65, 1245–1266. https://doi.org/10.1007/s00285-011-0494-5
  • Hans, S., Christison, J., Liu, D. and Westerfield, M. (2007). Fgf-dependent otic induction requires competence provided by Foxi1 and Dlx3b. BMC Dev Biol. 19;7:5. https://doi.org/10.1186%2F1471-213X-7-5.
  • Helwany, M., Arbor, T.C. and Tadi P. Embryology, Ear. (2023). In: StatPearls [Internet]. Treasure Island (FL): StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK557588/.
  • Herdman SJ. (2013). Vestibular rehabilitation. Curr Opin Neurol. 26(1), 96-101. https://doi.org/10.1097/WCO.0b013e32835c5ec4.
  • Holstein, G. R., Friedrich, Jr. V. L. & Martinelli, G. P. (2014). Projection neurons of the vestibulo‐sympathetic reflex pathway. Journal of Comparative Neurology, 522(9), 2053-2074. https://doi.org/10.1002/cne.23517.
  • Huang, Y., Mao, H., & Chen, Y. (2022). Regeneration of hair cells in the human vestibular system. Frontiers in Molecular Neuroscience, 15, 854635. https://doi.org/10.3389/fnmol.2022.854635.
  • Jamon, M. (2014). The development of vestibular system and related functions in mammals: impact of gravity. Frontiers in İntegrative Neuroscience, 8, 11. https://doi.org/10.3389%2Ffnint.2014.00011.
  • Lavigne-Rebillard, M. (1985). Development of the internal ear during the 1st trimester of pregnancy. Annales D’Oto-Laryngologie et de Chirurgie Cervico Faciale. 102(7), 493-498. https://pubmed.ncbi.nlm.nih.gov/3879139/.
  • Lim, R. & Brichta, A. M. (2016). Anatomical and physiological development of the human inner ear. Hearing research, 338, 9-21. 102(7), 493–498. https://doi.org/10.1016/j.heares.2016.02.004.
  • Liu, S., Wang, Y., Lu, Y., et al. (2008). The key transcription factor expression in the developing vestibular and auditory sensory organs: A comprehensive comparison of spatial and temporal patterns. Neural Plast. 7513258. https://doi.org /10.1155/2018/7513258.
  • Locher, H., Frijns, J. H., van Iperen, L., de Groot, J. C., Huisman, M.A., & Chuva de Sousa Lopes, S. M. (2013). Neurosensory development and cell fate determination in the human cochlea. NeuralDevelopment, 8, 20. https://doi.org/10.1186/1749-8104-8-20.
  • Maklad, A., & Fritzsch, B. (2003). Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Developmental Brain Research,140, 223–236. https://doi.org/10.1016/s0165-3806(02)00609-0.
  • Mather G., (2018), Duyu ve algının temelleri , (çev., Canan.S, Dokuyucu R.), (ikinci basımdan çeviri), Ankara: Nobel Akademik Yayıncılık.
  • Mbiene, J. P., Favre, D., & Sans, A. (1988). Early innervation and differentiation of hair cells in the vestibular epithelia of Mouse embryos: SEM and TEM study. Anatomy and Embryology (Berlin), 177, 331–340. https://doi.org/10.1007/bf00315841.
  • Merlo, G. R., Paleari, L., Mantero, S., Zerega, B., Adamska, M., Rinkwitz, S., ... & Levi, G. (2002). The Dlx5 homeobox gene is essential for vestibular morphogenesis in the mouse embryo through a BMP4-mediated pathway. Developmental biology, 248(1), 157-169. https://doi.org/10.1006/dbio.2002.0713.
  • Ohyama, T., Mohamed, O.A., Taketo, M.M., Dufort, D. and Groves, A.K. (2006).Wnt signals mediate a fate decision between otic placode and epidermis. Development. 133(5):865-75. https://doi.org/10.1242/dev.02271.
  • Powles‐Glover, N., & Maconochie, M. (2018). Prenatal and postnatal development of the mammalian ear. Birth Defects Research, 110(3), 228-245. https://doi.org/10.1002/bdr2.1167.
  • Riccomagno, M.M., Martinu, L., Mulheisen, M., Wu, D.K. and Epstein, D.J. (2002). Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev. 15;16(18), 2365-78. https://doi.org/10.1101/gad.1013302.
  • Roesch, S., Rasp, G., Sarikas, A., & Dossena, S. (2021). Genetic determinants of non-syndromic enlarged vestibular aqueduct: A Review. Audiology Research, 11(3), 423-443. https://doi.org/10.3390/audiolres11030040.
  • Ronca, A. E., Fritzsch, B., Bruce, L. L., and Alberts, J. R. (2008). Orbital spaceflight during pregnancy shapes function of mammalian vestibular system. Behav. Neurosci. 122, 224–232. https://doi.org/10.1037/0735-7044.122.1.224.
  • Peterson, M.L., Christou, E. and Rosengren, K.S. (2006). Children achieve adult-like sensory integration during stance at 12-years-old. Gait&Posture, 23(4), 455-463. https://doi.org/10.1016/j.gaitpost.2005.05.003.
  • Sayyid, Z. N., Wang, T., Chen, L., Jones, S. M., & Cheng, A. G. (2019). Atoh1 directs regeneration and functional recovery of the mature mouse vestibular system. Cell reports, 28(2), 312-324. https://doi.org/10.1016%2Fj.celrep.2019.06.028. Urness, L. D., Paxton, C. N., Wang, X., Schoenwolf, G. C., & Mansour, S. L. (2010). FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. Developmental Biology, 340(2), 595–604. https://doi.org/10.1016/j.ydbio.2010.02.016.
  • Ünver, E., Demirci, N., Konşuk Ünlü, D. & Cinemre, D. D. Ş. A. (2019). Erkek çocuklarda denge düzeyi, biyomotor beceriler ve fiziksel aktivite ilişkisi . Spor Bilimleri Dergisi , 30 (2) , 53-62 . https://doi.org/ 10.17644/sbd.434483.
  • Vinay, L., Brocard, F., Pflieger, J. F., Simeoni-Alias, J., and Clarac, F. (2000). Perinataldevelopment of lumbar motoneurons and their inputs in the rat. Brain Res. Bull. 53, 635–647. https://doi.org/10.1016/S0361-9230(00)00397-X.
  • Whitfield, T. (2015). Development of the inner ear. Current Opinion in Genetics & Development, 32, 112–118. https://doi.org/10.1016/j.gde.2015.02.006.
  • Wu, D. K., & Kelly, M. W. (2012). Molecular mechanisms of iner ear development. Cold Spring Harbor Perspective Biology, 4(8),a008409. https://doi.org/10.1101%2Fcshperspect.a008409.
  • Yasuda, M., Yamada, S., Uwabe, C., Shiota, K., & Yasuda, Y. (2007). Three-dimensional analysis of inner ear development in human embryos. Anatomical Science International, 82 (3), 156-163. https://doi.org/10.1111/j.1447-073x.2007.00176.x.
  • Yoo, H. and Mihaila, D.M. Neuroanatomy, Vestibular pathways. (2022). In: StatPearls [Internet]. Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK557380/

periferik vestibüler sistemin nörogelişimi ve nörogelişime etki eden genetik faktörler

Year 2024, Volume: 9 Issue: 3, 575 - 587, 31.12.2024
https://doi.org/10.25279/sak.1196572

Abstract

Bireye uzaydaki tüm vücut konumu, pozisyonu ve hareketi ile ilgili bilgi veren ve verdiği bu bilgiler ile diğer duyusal sistemlerimize referans oluşturduğu bilinen vestibüler sistemimizin. denge, koordinasyon ve görsel kontrolde önemli etkinliği olmakla birlikte yapılan çalışmalar vestibüler sistemin, kan basıncı, kas tonusu, dikkat, tehlike farkındalığı ve güven duygusu gibi pek çok alan ile de ilişkili olduğunu göstermiştir. Bu çalışmada farede ve insanda periferik vestibüler sistemin doğum öncesi ve doğum sonrası gelişim aşamaları ve bu aşamalara etki eden genetik faktörleri tespit eden çalışmalar derlenmiştir.

Ethical Statement

Bu makale tez çalışmasından üretilmemiştir. Herhangi bir toplantıda sözlü/yazılı olarak sunulmamış, bildiri kitapçığında özeti basılmamıştır. Herhangi bir kurum/kuruluş/şahıstan herhangi türde bir destek alınmamıştır. Derleme çalışması olduğundan etik kurul izni alınmamıştır.

References

  • Araman, Z., & Sari Gokten, E. . (2022). Evaluation of gravitational ınsecurity in school-age children diagnosed with learning disorder. International Journal Of Scientific Research and Management, 10 (03), 581–592. https://doi.org/10.18535/ijsrm/v10i03.mp03.
  • Barald, K.F. & Kelley, M. W. (2004). From placode to polarization: new tunes in inner ear development. Development; 131 (17), 4119–4130. https://doi.org/10.1242/dev.01339
  • Bigelow, R. T., & Agrawal, Y. (2015). Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory. Journal of Vestibular Research, 25(2), 73-89. https://doi.org/10.3233/ves -150544.
  • Bok, J., Dolson, DK., Hill, P., Rüther, U., Epstein, DJ. and Wu, DK. (2007). Opposing gradients of Gli repressor and activators mediate Shh signaling along the dorsoventral axis of the inner ear. Development. 134(9), 1713-22. https://doi.org/10.1242/dev.000760.
  • Bok, J., Raft, S., Kong, KA., Koo, SK., Drager, UC., and Wu, DK. (2011). Transient retinoic acid signaling confers anterior-posterior polarity to the inner ear. Proc Natl Acad Sci 108: 161–166. https://doi.org/10.1073/pnas.1010547108.
  • Bok, J., Zenczak, C., Hwang, C. H., and Wu, D. K. (2013). Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proceedings of the National Academy of Sciences, 110(34), 13869-13874. https://doi.org/10.1073/pnas.1222341110.
  • Bruska, M., Ulatowska-Błaszyk, K., Weglowski, M., Woźniak, W., & Piotrowski, A. (2009). Differentiation of the facial-vestibulocochlear ganglionic complex in human embryos of developmental stages 13–15. Folia Morphologica, 68(3), 167-173. https://pubmed.ncbi.nlm.nih.gov/19722161/.
  • Burns, J. C., & Stone, J. S. (2017). Development and regeneration of vestibular hair cells in mammals. In Seminars in cell & developmental biology. Academic Press, 65:96-105. https://doi.org/10.1016/j.semcdb.2016.11.001.
  • Carlson, N., (2011) . Fizyolojik psikoloji davranışın nörolojik temelleri (Foundations of behavioral neuroscience), Nobel Yayınevi.
  • Casale, J., Browne, T., Murray, I., & Gupta, G. (2018). Physiology, Vestibular system, StatPearls Publishing.
  • Çöpkes, Ü. (2013). Otistik çocuklarda vestibüler rehabilitasyonun etkisi (Master's thesis, İstanbul Bilim Üniversitesi, Sağlık Bilimleri Enstitüsü.). http://acikerisim.demiroglu.bilim.edu.tr:8080/xmlui/handle/11446/143.
  • Dechesne, C. J., & Sans, A. (1985). Development of vestibular receptor surfaces in human fetuses. American Journal of Otolaryngology, 6(5), 378-387. https://doi.org/10.1016/s0196-0709(85)80016-8.
  • Dechesne, C. J., Desmadryl, G., & Dememes, D. (1987). Myelination of the mouse vestibular ganglion. Acta Oto-Laryngologica, 103(1-2), 18-23. https://doi.org/10.3109/00016488709134693.
  • Desmadryl, G. (1991). Postnatal developmental changes in the responses of mouse primary vestibular neurons to externally applied galvanic currents. Brain Research. Developmental Brain Research, 64, 137–143. https://doi.org/10.1016/0165-3806(91)90217-7.
  • Desmadryl, G., Raymond, J., & Sans, A. (1986). In vitro electrophysiological study of spontaneous activity in neonatal mouse vestibular ganglion neurons during development. Brain Research, 390, 133. https://doi.org/10.1016/0165-3806(86)90160-4.
  • Eatock, R. A. and Songer, J. E. (2011). Vestibular hair cells and afferents: two channels for head motion signals, Annu. Rev. Neurosci. 34, 501-534. https://doi.org/10.1146/annurev-neuro-061010-113710.
  • Eggers, S. D., & Zee, D. S. (2010). Overview of vestibular and balance disorders. Handbook of Clinical Neurophysiology, s:5.
  • Freeman, S., Plotnik, M., Elidan, J., and Sohmer, H. (1999). Development of short latency vestibular evoked potentials in the neonatal rat. Hear. Res. 137, 51–58. https://doi.org/10.1016/S0378-5955(99)00137-9.
  • Fritzsch, B., Barald, K. F., & Lomax, M. I. (1998). Early embryology of the vertebrate ear. In R. R. Fay (Ed.), Development of the auditory system. New York: Springer. 81–146. https://link.springer.com/chapter/10.1007/978-1-4612-2186-9_3.
  • Guidetti, G. (2013). The role of cognitive processes in vestibular disorders. Hearing, Balance and Communication, 11, 3–35. https://doi.org/10.3109/21695717.2013.765085
  • Hanes, D.A. (2012). Mathematical requirements of visual–vestibular integration. J. Math. Biol. 65, 1245–1266. https://doi.org/10.1007/s00285-011-0494-5
  • Hans, S., Christison, J., Liu, D. and Westerfield, M. (2007). Fgf-dependent otic induction requires competence provided by Foxi1 and Dlx3b. BMC Dev Biol. 19;7:5. https://doi.org/10.1186%2F1471-213X-7-5.
  • Helwany, M., Arbor, T.C. and Tadi P. Embryology, Ear. (2023). In: StatPearls [Internet]. Treasure Island (FL): StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK557588/.
  • Herdman SJ. (2013). Vestibular rehabilitation. Curr Opin Neurol. 26(1), 96-101. https://doi.org/10.1097/WCO.0b013e32835c5ec4.
  • Holstein, G. R., Friedrich, Jr. V. L. & Martinelli, G. P. (2014). Projection neurons of the vestibulo‐sympathetic reflex pathway. Journal of Comparative Neurology, 522(9), 2053-2074. https://doi.org/10.1002/cne.23517.
  • Huang, Y., Mao, H., & Chen, Y. (2022). Regeneration of hair cells in the human vestibular system. Frontiers in Molecular Neuroscience, 15, 854635. https://doi.org/10.3389/fnmol.2022.854635.
  • Jamon, M. (2014). The development of vestibular system and related functions in mammals: impact of gravity. Frontiers in İntegrative Neuroscience, 8, 11. https://doi.org/10.3389%2Ffnint.2014.00011.
  • Lavigne-Rebillard, M. (1985). Development of the internal ear during the 1st trimester of pregnancy. Annales D’Oto-Laryngologie et de Chirurgie Cervico Faciale. 102(7), 493-498. https://pubmed.ncbi.nlm.nih.gov/3879139/.
  • Lim, R. & Brichta, A. M. (2016). Anatomical and physiological development of the human inner ear. Hearing research, 338, 9-21. 102(7), 493–498. https://doi.org/10.1016/j.heares.2016.02.004.
  • Liu, S., Wang, Y., Lu, Y., et al. (2008). The key transcription factor expression in the developing vestibular and auditory sensory organs: A comprehensive comparison of spatial and temporal patterns. Neural Plast. 7513258. https://doi.org /10.1155/2018/7513258.
  • Locher, H., Frijns, J. H., van Iperen, L., de Groot, J. C., Huisman, M.A., & Chuva de Sousa Lopes, S. M. (2013). Neurosensory development and cell fate determination in the human cochlea. NeuralDevelopment, 8, 20. https://doi.org/10.1186/1749-8104-8-20.
  • Maklad, A., & Fritzsch, B. (2003). Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Developmental Brain Research,140, 223–236. https://doi.org/10.1016/s0165-3806(02)00609-0.
  • Mather G., (2018), Duyu ve algının temelleri , (çev., Canan.S, Dokuyucu R.), (ikinci basımdan çeviri), Ankara: Nobel Akademik Yayıncılık.
  • Mbiene, J. P., Favre, D., & Sans, A. (1988). Early innervation and differentiation of hair cells in the vestibular epithelia of Mouse embryos: SEM and TEM study. Anatomy and Embryology (Berlin), 177, 331–340. https://doi.org/10.1007/bf00315841.
  • Merlo, G. R., Paleari, L., Mantero, S., Zerega, B., Adamska, M., Rinkwitz, S., ... & Levi, G. (2002). The Dlx5 homeobox gene is essential for vestibular morphogenesis in the mouse embryo through a BMP4-mediated pathway. Developmental biology, 248(1), 157-169. https://doi.org/10.1006/dbio.2002.0713.
  • Ohyama, T., Mohamed, O.A., Taketo, M.M., Dufort, D. and Groves, A.K. (2006).Wnt signals mediate a fate decision between otic placode and epidermis. Development. 133(5):865-75. https://doi.org/10.1242/dev.02271.
  • Powles‐Glover, N., & Maconochie, M. (2018). Prenatal and postnatal development of the mammalian ear. Birth Defects Research, 110(3), 228-245. https://doi.org/10.1002/bdr2.1167.
  • Riccomagno, M.M., Martinu, L., Mulheisen, M., Wu, D.K. and Epstein, D.J. (2002). Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev. 15;16(18), 2365-78. https://doi.org/10.1101/gad.1013302.
  • Roesch, S., Rasp, G., Sarikas, A., & Dossena, S. (2021). Genetic determinants of non-syndromic enlarged vestibular aqueduct: A Review. Audiology Research, 11(3), 423-443. https://doi.org/10.3390/audiolres11030040.
  • Ronca, A. E., Fritzsch, B., Bruce, L. L., and Alberts, J. R. (2008). Orbital spaceflight during pregnancy shapes function of mammalian vestibular system. Behav. Neurosci. 122, 224–232. https://doi.org/10.1037/0735-7044.122.1.224.
  • Peterson, M.L., Christou, E. and Rosengren, K.S. (2006). Children achieve adult-like sensory integration during stance at 12-years-old. Gait&Posture, 23(4), 455-463. https://doi.org/10.1016/j.gaitpost.2005.05.003.
  • Sayyid, Z. N., Wang, T., Chen, L., Jones, S. M., & Cheng, A. G. (2019). Atoh1 directs regeneration and functional recovery of the mature mouse vestibular system. Cell reports, 28(2), 312-324. https://doi.org/10.1016%2Fj.celrep.2019.06.028. Urness, L. D., Paxton, C. N., Wang, X., Schoenwolf, G. C., & Mansour, S. L. (2010). FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. Developmental Biology, 340(2), 595–604. https://doi.org/10.1016/j.ydbio.2010.02.016.
  • Ünver, E., Demirci, N., Konşuk Ünlü, D. & Cinemre, D. D. Ş. A. (2019). Erkek çocuklarda denge düzeyi, biyomotor beceriler ve fiziksel aktivite ilişkisi . Spor Bilimleri Dergisi , 30 (2) , 53-62 . https://doi.org/ 10.17644/sbd.434483.
  • Vinay, L., Brocard, F., Pflieger, J. F., Simeoni-Alias, J., and Clarac, F. (2000). Perinataldevelopment of lumbar motoneurons and their inputs in the rat. Brain Res. Bull. 53, 635–647. https://doi.org/10.1016/S0361-9230(00)00397-X.
  • Whitfield, T. (2015). Development of the inner ear. Current Opinion in Genetics & Development, 32, 112–118. https://doi.org/10.1016/j.gde.2015.02.006.
  • Wu, D. K., & Kelly, M. W. (2012). Molecular mechanisms of iner ear development. Cold Spring Harbor Perspective Biology, 4(8),a008409. https://doi.org/10.1101%2Fcshperspect.a008409.
  • Yasuda, M., Yamada, S., Uwabe, C., Shiota, K., & Yasuda, Y. (2007). Three-dimensional analysis of inner ear development in human embryos. Anatomical Science International, 82 (3), 156-163. https://doi.org/10.1111/j.1447-073x.2007.00176.x.
  • Yoo, H. and Mihaila, D.M. Neuroanatomy, Vestibular pathways. (2022). In: StatPearls [Internet]. Treasure Island (FL). https://www.ncbi.nlm.nih.gov/books/NBK557380/
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section reviews
Authors

Zeynep Araman 0000-0002-5822-8839

Publication Date December 31, 2024
Submission Date October 30, 2022
Acceptance Date June 19, 2024
Published in Issue Year 2024 Volume: 9 Issue: 3

Cite

APA Araman, Z. (2024). periferik vestibüler sistemin nörogelişimi ve nörogelişime etki eden genetik faktörler. Health Academy Kastamonu, 9(3), 575-587. https://doi.org/10.25279/sak.1196572

Health Academy Kastamonu is included in the class of 1-b journals (journals scanned in international indexes other than SCI, SSCI, SCI-expanded, ESCI) according to UAK associate professorship criteria. HEALTH ACADEMY KASTAMONU Journal cover is registered by the Turkish Patent Institute.