Research Article
BibTex RIS Cite

Theoretical Investigation of W(CO)6 and CO Selenization Process

Year 2022, , 283 - 291, 30.04.2022
https://doi.org/10.16984/saufenbilder.1038357

Abstract

Detailed atomic-level insight into the mechanism of W(CO)6 and CO selenization is essential for the fabrication of cheap and environmentally benign transition metal chalcogenides such as MoS2 and WSe2. Earlier discussions in literature have focused mainly on the CO methanation by sulfur and its derivatives but H2Se mediated CO methanation at the atomic level is yet to be explored. First-principles calculations and ReaxFF-based molecular dynamics simulations are conducted here to explore the relative stabilities of intermediates formed during the gas-phase interactions of W(CO)6 and H2Se, determined associated reaction energies and kinetic barriers. The methanation of CO, which is released from the organometal, by H2Se is further investigated. The results indicate that the chain reactions of W(CO)6 and H2Se lead to the formation of a thermodynamically stable end product of W(SeH)2Se2. Depending on the temperature, W(HSe)2Se2 is expected to go through a last uphill reaction by releasing H2Se into the environment and evolving into a WSe3 molecule. Additionally, the dehydrogenation of organometallic molecules is thermodynamically feasible but kinetically controlled, requiring a significant activation energy. When all CO groups are released from the W atom, the H2 release from W-compund becomes nearly barrierless. Since CO radical groups are dominant byproducts formed during the MOCVD chain reactions but in a chalcogen rich environment, this work also shed light into the CO selenization during the growth of transition metal diselenides (e.g., WSe2, MoSe2, CrSe2) and discusses the formation of potential products such as CSe2, CH4, H2Se, CO, H2O, Se2.

Supporting Institution

Karamanoğlu Mehmetbey University and the National Science Foundation (NSF) through the Pennsylvania State University 2D Crystal Consortium−Materials Innovation Platform (2DCC-MIP)

Project Number

The NSF cooperative agreement DMR-1539916

Thanks

The author also thanks Prof. Adri van Duin for the fruitful discussions

References

  • [1] A. Eftekhari, “Tungsten Dichalcogenides (WS2, WSe2, and WTe2): Materials Chemistry and Applications,” J. Mater. Chem. A, vol. 5, no. 35, pp. 18299–18325, 2017.
  • [2] T.H. Choudhury, X. Zhang, Z.Y.A. Balushi, M. Chubarov, J.M. Redwing, “Epitaxial Growth of 2D Layered Transition Metal Dichalcogenides,” ArXiv190903502 Cond-Mat 2019. [3] H. Qin, Q.-X. Pei, Y. Liu, Y.-W. Zhang, “The Mechanical and Thermal Properties of MoS2–WSe2 Lateral Heterostructures,” Phys. Chem. Chem. Phys., vol. 21, no. 28, pp. 15845–15853, 2019.
  • [4] W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, “Recent Development of Two-Dimensional Transition Metal Dichalcogenides and Their Applications,” Mater. Today, vol. 20, no. 3, 116–130, 2017.
  • [5] D. Andrzejewski, H. Myja, M. Heuken, A. Grundmann, H. Kalisch, A. Vescan, T. Kümmell, G. Bacher, “Scalable Large-Area p–i–n Light-Emitting Diodes Based on WS2 Monolayers Grown via MOCVD,” ACS Photonics, vol. 6, no. 8, pp. 1832–1839, 2019.
  • [6] X. Zhang, F. Zhang, Y. Wang, D.S. Schulman, T. Zhang, A. Bansal, N. Alem, S. Das, V.H. Crespi, M. Terrones, J.M. Redwing, “Defect-Controlled Nucleation and Orientation of WSe2 on HBN: A Route to Single-Crystal Epitaxial Monolayers,” ACS Nano, vol. 13, no. 3, pp. 3341–3352, 2019.
  • [7] B.D. Keller, A. Bertuch, J. Provine, G. Sundaram, N. Ferralis, J.C. Grossman, “Process Control of Atomic Layer Deposition Molybdenum Oxide Nucleation and Sulfidation to Large-Area MoS2 Monolayers,” Chem. Mater., vol. 29, no. 5, pp. 2024–2032, 2017.
  • [8] W. Hao, C. Marichy, C. Journet, “Atomic Layer Deposition of Stable 2D Materials,” 2D Mater., vol. 6, no. 1, 012001, 2018.
  • [9] G.-H. Park, K. Nielsch, A. Thomas, “Atomic Layer Deposition: 2D Transition Metal Dichalcogenide Thin Films Obtained by Chemical Gas Phase Deposition Techniques (Adv. Mater. Interfaces 3/2019),” Adv. Mater. Interfaces, vol. 6, no. 3, 1970024, 2019.
  • [10] X. Zhang, Z.Y. Al Balushi, F. Zhang, T.H. Choudhury, S.M. Eichfeld, N. Alem, T.N. Jackson, J.A. Robinson, J.M. Redwing, “Influence of Carbon in Metalorganic Chemical Vapor Deposition of Few-Layer WSe2 Thin Films,” J. Electron. Mater., vol. 45, no. 12, pp. 6273–6279, 2016. [11] T.H. Choudhury, H. Simchi, R. Boichot, M. Chubarov, S.E. Mohney, J.M. Redwing, “Chalcogen Precursor Effect on Cold-Wall Gas-Source Chemical Vapor Deposition Growth of WS2,” Cryst. Growth Des., vol. 18, no. 8, pp. 4357–4364, 2018.
  • [12] Y. Gong, X. Zhang, J.M. Redwing, T.N. Jackson, “Thin Film Transistors Using Wafer-Scale Low-Temperature MOCVD WSe2,” J. Electron. Mater., vol. 45, no. 12, pp. 6280–6284, 2016.
  • [13] L. Jiao, H.J. Liu, J.L. Chen, Y. Yi, W.G. Chen, Y. Cai, J.N. Wang, X.Q. Dai, N. Wang, W.K. Ho, M.H. Xie, “Molecular-Beam Epitaxy of Monolayer MoSe2: Growth Characteristics and Domain Boundary Formation,” New J. Phys., vol. 17, no. 5, 053023, 2015.
  • [14] Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil, Z.-X. Shen, “Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe2,” Nat. Nanotechnol., vol. 9, no. 2, pp. 111–115, 2014.
  • [15] H.J. Liu, L. Jiao, L. Xie, F. Yang, J.L. Chen, W.K. Ho, C.L. Gao, J.F. Jia, X.D. Cui, M.H. Xie, “Molecular-Beam Epitaxy of Monolayer and Bilayer WSe2: A Scanning Tunneling Microscopy/Spectroscopy Study and Deduction of Exciton Binding Energy,” 2D Mater., vol. 2, no. 3, 034004, 2015.
  • [16] M. Nakano, Y. Wang, Y. Kashiwabara, H. Matsuoka, Y. Iwasa, “Layer-by-Layer Epitaxial Growth of Scalable WSe2 on Sapphire by Molecular Beam Epitaxy,” Nano Lett., vol. 17, no. 9, pp. 5595–5599, 2017.
  • [17] Y. Xuan, A. Jain, S. Zafar, R. Lotfi, N. Nayir, Y. Wang, T.H. Choudhury, S. Wright, J. Feraca, L. Rosenbaum, JM Redwing, V. Crespi, A.C.T. van Duin, “Multi-Scale Modeling of Gas-Phase Reactions in Metal-Organic Chemical Vapor Deposition Growth of WSe2,” J. Cryst. Growth, vol. 527, 125247, 2019.
  • [18] A.D. Bochevarov, E. Harder, T.F. Hughes, J.R. Greenwood, D.A. Braden, D.M. Philipp, D. Rinaldo, M.D. Halls, J. Zhang, R.A. Friesner, “Jaguar: A High-Performance Quantum Chemistry Software Program with Strengths in Life and Materials Sciences,” Int. J. Quantum Chem., vol. 113, no. 18, pp. 2110–2142, 2013.
  • [19] Amsterdam Modeling Suite Making Computational Chemistry Work For You https://www.scm.com/ (accessed 2020 -11 -10).
  • [20] K. Chenoweth, A.C.T. van Duin, W.A. Goddard, “ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation,” J. Phys. Chem. A, vol. 112, no. 5, pp. 1040–1053, 2008.
  • [21] K. Momma, F. Izumi, “VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data,” J. Appl. Crystallogr., vol. 44, no. 6, pp. 1272–1276, 2011.
  • [22] S.M. Eichfeld, L. Hossain, Y.-C. Lin, A.F. Piasecki, B. Kupp, A.G. Birdwell, R.A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R.M. Wallace, M.J. Kim, T.S. Mayer, J.M. Redwing, J.A. Robinson, “Highly Scalable, Atomically Thin WSe2 Grown via Metal–Organic Chemical Vapor Deposition,” ACS Nano, vol. 9, no. 2, pp. 2080–2087, 2015.
  • [23] K.L. Joshi, S. Raman, A.C.T. van Duin, “Connectivity-Based Parallel Replica Dynamics for Chemically Reactive Systems: From Femtoseconds to Microseconds,” J. Phys. Chem. Lett., vol. 4, no. 21, pp. 3792–3797, 2013.
  • [24] K.M. Bal, E.C. Neyts, “Merging Metadynamics into Hyperdynamics: Accelerated Molecular Simulations Reaching Time Scales from Microseconds to Seconds,” J. Chem. Theory Comput., vol. 11, no. 10, pp. 4545–4554, 2015.
  • [25] K.M. Bal, E.C. Neyts, “Direct Observation of Realistic-Temperature Fuel Combustion Mechanisms in Atomistic Simulations,” Chem. Sci., vol. 7, no. 8, pp. 5280–5286, 2016.
Year 2022, , 283 - 291, 30.04.2022
https://doi.org/10.16984/saufenbilder.1038357

Abstract

Project Number

The NSF cooperative agreement DMR-1539916

References

  • [1] A. Eftekhari, “Tungsten Dichalcogenides (WS2, WSe2, and WTe2): Materials Chemistry and Applications,” J. Mater. Chem. A, vol. 5, no. 35, pp. 18299–18325, 2017.
  • [2] T.H. Choudhury, X. Zhang, Z.Y.A. Balushi, M. Chubarov, J.M. Redwing, “Epitaxial Growth of 2D Layered Transition Metal Dichalcogenides,” ArXiv190903502 Cond-Mat 2019. [3] H. Qin, Q.-X. Pei, Y. Liu, Y.-W. Zhang, “The Mechanical and Thermal Properties of MoS2–WSe2 Lateral Heterostructures,” Phys. Chem. Chem. Phys., vol. 21, no. 28, pp. 15845–15853, 2019.
  • [4] W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, “Recent Development of Two-Dimensional Transition Metal Dichalcogenides and Their Applications,” Mater. Today, vol. 20, no. 3, 116–130, 2017.
  • [5] D. Andrzejewski, H. Myja, M. Heuken, A. Grundmann, H. Kalisch, A. Vescan, T. Kümmell, G. Bacher, “Scalable Large-Area p–i–n Light-Emitting Diodes Based on WS2 Monolayers Grown via MOCVD,” ACS Photonics, vol. 6, no. 8, pp. 1832–1839, 2019.
  • [6] X. Zhang, F. Zhang, Y. Wang, D.S. Schulman, T. Zhang, A. Bansal, N. Alem, S. Das, V.H. Crespi, M. Terrones, J.M. Redwing, “Defect-Controlled Nucleation and Orientation of WSe2 on HBN: A Route to Single-Crystal Epitaxial Monolayers,” ACS Nano, vol. 13, no. 3, pp. 3341–3352, 2019.
  • [7] B.D. Keller, A. Bertuch, J. Provine, G. Sundaram, N. Ferralis, J.C. Grossman, “Process Control of Atomic Layer Deposition Molybdenum Oxide Nucleation and Sulfidation to Large-Area MoS2 Monolayers,” Chem. Mater., vol. 29, no. 5, pp. 2024–2032, 2017.
  • [8] W. Hao, C. Marichy, C. Journet, “Atomic Layer Deposition of Stable 2D Materials,” 2D Mater., vol. 6, no. 1, 012001, 2018.
  • [9] G.-H. Park, K. Nielsch, A. Thomas, “Atomic Layer Deposition: 2D Transition Metal Dichalcogenide Thin Films Obtained by Chemical Gas Phase Deposition Techniques (Adv. Mater. Interfaces 3/2019),” Adv. Mater. Interfaces, vol. 6, no. 3, 1970024, 2019.
  • [10] X. Zhang, Z.Y. Al Balushi, F. Zhang, T.H. Choudhury, S.M. Eichfeld, N. Alem, T.N. Jackson, J.A. Robinson, J.M. Redwing, “Influence of Carbon in Metalorganic Chemical Vapor Deposition of Few-Layer WSe2 Thin Films,” J. Electron. Mater., vol. 45, no. 12, pp. 6273–6279, 2016. [11] T.H. Choudhury, H. Simchi, R. Boichot, M. Chubarov, S.E. Mohney, J.M. Redwing, “Chalcogen Precursor Effect on Cold-Wall Gas-Source Chemical Vapor Deposition Growth of WS2,” Cryst. Growth Des., vol. 18, no. 8, pp. 4357–4364, 2018.
  • [12] Y. Gong, X. Zhang, J.M. Redwing, T.N. Jackson, “Thin Film Transistors Using Wafer-Scale Low-Temperature MOCVD WSe2,” J. Electron. Mater., vol. 45, no. 12, pp. 6280–6284, 2016.
  • [13] L. Jiao, H.J. Liu, J.L. Chen, Y. Yi, W.G. Chen, Y. Cai, J.N. Wang, X.Q. Dai, N. Wang, W.K. Ho, M.H. Xie, “Molecular-Beam Epitaxy of Monolayer MoSe2: Growth Characteristics and Domain Boundary Formation,” New J. Phys., vol. 17, no. 5, 053023, 2015.
  • [14] Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil, Z.-X. Shen, “Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe2,” Nat. Nanotechnol., vol. 9, no. 2, pp. 111–115, 2014.
  • [15] H.J. Liu, L. Jiao, L. Xie, F. Yang, J.L. Chen, W.K. Ho, C.L. Gao, J.F. Jia, X.D. Cui, M.H. Xie, “Molecular-Beam Epitaxy of Monolayer and Bilayer WSe2: A Scanning Tunneling Microscopy/Spectroscopy Study and Deduction of Exciton Binding Energy,” 2D Mater., vol. 2, no. 3, 034004, 2015.
  • [16] M. Nakano, Y. Wang, Y. Kashiwabara, H. Matsuoka, Y. Iwasa, “Layer-by-Layer Epitaxial Growth of Scalable WSe2 on Sapphire by Molecular Beam Epitaxy,” Nano Lett., vol. 17, no. 9, pp. 5595–5599, 2017.
  • [17] Y. Xuan, A. Jain, S. Zafar, R. Lotfi, N. Nayir, Y. Wang, T.H. Choudhury, S. Wright, J. Feraca, L. Rosenbaum, JM Redwing, V. Crespi, A.C.T. van Duin, “Multi-Scale Modeling of Gas-Phase Reactions in Metal-Organic Chemical Vapor Deposition Growth of WSe2,” J. Cryst. Growth, vol. 527, 125247, 2019.
  • [18] A.D. Bochevarov, E. Harder, T.F. Hughes, J.R. Greenwood, D.A. Braden, D.M. Philipp, D. Rinaldo, M.D. Halls, J. Zhang, R.A. Friesner, “Jaguar: A High-Performance Quantum Chemistry Software Program with Strengths in Life and Materials Sciences,” Int. J. Quantum Chem., vol. 113, no. 18, pp. 2110–2142, 2013.
  • [19] Amsterdam Modeling Suite Making Computational Chemistry Work For You https://www.scm.com/ (accessed 2020 -11 -10).
  • [20] K. Chenoweth, A.C.T. van Duin, W.A. Goddard, “ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation,” J. Phys. Chem. A, vol. 112, no. 5, pp. 1040–1053, 2008.
  • [21] K. Momma, F. Izumi, “VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data,” J. Appl. Crystallogr., vol. 44, no. 6, pp. 1272–1276, 2011.
  • [22] S.M. Eichfeld, L. Hossain, Y.-C. Lin, A.F. Piasecki, B. Kupp, A.G. Birdwell, R.A. Burke, N. Lu, X. Peng, J. Li, A. Azcatl, S. McDonnell, R.M. Wallace, M.J. Kim, T.S. Mayer, J.M. Redwing, J.A. Robinson, “Highly Scalable, Atomically Thin WSe2 Grown via Metal–Organic Chemical Vapor Deposition,” ACS Nano, vol. 9, no. 2, pp. 2080–2087, 2015.
  • [23] K.L. Joshi, S. Raman, A.C.T. van Duin, “Connectivity-Based Parallel Replica Dynamics for Chemically Reactive Systems: From Femtoseconds to Microseconds,” J. Phys. Chem. Lett., vol. 4, no. 21, pp. 3792–3797, 2013.
  • [24] K.M. Bal, E.C. Neyts, “Merging Metadynamics into Hyperdynamics: Accelerated Molecular Simulations Reaching Time Scales from Microseconds to Seconds,” J. Chem. Theory Comput., vol. 11, no. 10, pp. 4545–4554, 2015.
  • [25] K.M. Bal, E.C. Neyts, “Direct Observation of Realistic-Temperature Fuel Combustion Mechanisms in Atomistic Simulations,” Chem. Sci., vol. 7, no. 8, pp. 5280–5286, 2016.
There are 23 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Nadire Nayir 0000-0002-3621-2481

Project Number The NSF cooperative agreement DMR-1539916
Publication Date April 30, 2022
Submission Date December 18, 2021
Acceptance Date February 19, 2022
Published in Issue Year 2022

Cite

APA Nayir, N. (2022). Theoretical Investigation of W(CO)6 and CO Selenization Process. Sakarya University Journal of Science, 26(2), 283-291. https://doi.org/10.16984/saufenbilder.1038357
AMA Nayir N. Theoretical Investigation of W(CO)6 and CO Selenization Process. SAUJS. April 2022;26(2):283-291. doi:10.16984/saufenbilder.1038357
Chicago Nayir, Nadire. “Theoretical Investigation of W(CO)6 and CO Selenization Process”. Sakarya University Journal of Science 26, no. 2 (April 2022): 283-91. https://doi.org/10.16984/saufenbilder.1038357.
EndNote Nayir N (April 1, 2022) Theoretical Investigation of W(CO)6 and CO Selenization Process. Sakarya University Journal of Science 26 2 283–291.
IEEE N. Nayir, “Theoretical Investigation of W(CO)6 and CO Selenization Process”, SAUJS, vol. 26, no. 2, pp. 283–291, 2022, doi: 10.16984/saufenbilder.1038357.
ISNAD Nayir, Nadire. “Theoretical Investigation of W(CO)6 and CO Selenization Process”. Sakarya University Journal of Science 26/2 (April 2022), 283-291. https://doi.org/10.16984/saufenbilder.1038357.
JAMA Nayir N. Theoretical Investigation of W(CO)6 and CO Selenization Process. SAUJS. 2022;26:283–291.
MLA Nayir, Nadire. “Theoretical Investigation of W(CO)6 and CO Selenization Process”. Sakarya University Journal of Science, vol. 26, no. 2, 2022, pp. 283-91, doi:10.16984/saufenbilder.1038357.
Vancouver Nayir N. Theoretical Investigation of W(CO)6 and CO Selenization Process. SAUJS. 2022;26(2):283-91.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.