Research Article
BibTex RIS Cite

Quantum Efficiency Improvement of InGaN Near Ultraviolet LED Design by Genetic Algorithm

Year 2023, , 94 - 112, 28.02.2023
https://doi.org/10.16984/saufenbilder.1051252

Abstract

A near-ultraviolet (367-nm) InGaN light-emitting diode (LED) with 5.75 nm quantum well depth was designed and both internal/external quantum efficiency (IQE/EQE) values were optimized considering the effects of non-radiative recombination rates and possible fabrica-tion errors. Firstly, the IQE of the design was enhanced by a genetic algorithm code which was developed particularly for this study. Distributed Bragg Reflectors and optional ultra-thin 1nm AlN interlayer were also used to increase overall light extraction efficiency. Then, alloy and doping concentration effects on wavelength-dependent optical and structural parameters were analyzed via the CASTEP software package based on density functional theory to pre-sent a more detailed and realistic optimization. The relatively great values of 42.6% IQE and 90.2% LEE were achieved. The final structure with 1.00 mm × 1.00 mm surface area requires only 200 mW input power to operate at 3.75 V.

Thanks

The nanostructure quantum electronic simulation nextnano has been employed in the first optimization step on internal quantum efficiency. We would like to thank Dr. Stefan BIRNER and the team for their understanding and contribution in using the package.

References

  • [1] X. Han, Y. Zhang, P. Li, L. Yan, G. Deng, L. Chen, Y. Yu, J. Yin, “Fabrication of vertically conducting near ultraviolet LEDs on SiC substrates,” Superlattices and Microstructures, vol. 125, pp. 348-355, 2018.
  • [2] T. Wu, Q. Zha, W. Chen, Z. Xu, T. Wang, X. He, “Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong,” Atmospheric Environment, vol. 95, pp. 544-55, 2014.
  • [3] A. M. Suhail, M. J. Khalifa, N. M. Saeed, O. A. Ibrahim, “White light generation from CdS nanoparticles illuminated by UV-LED,” The European Physical Journal Applied Physics, vol. 49, p. 30601, 2010.
  • [4] O. Rodenko, H. Fodgaard, P. T. Lichtenberg, M. Petersen, C. Pedersen, “340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays,” Optics Express, vol. 24, no. 19, pp. 22135-22143, 2016.
  • [5] Y. Thana, A. Ngamjarurojana, D. Boonyawan, “Analysis of cold atmospheric-pressure bio-medicine plasmas by using UV absorption spectroscopy,” Surface & Coatings Technology, vol. 306, pp. 106-112, 2016.
  • [6] J. Xu, C. Wu, Z. Yang, W. Liu, H. Chen, K. Batool, J. Yao, X. Fan, J. Wu, W. Rao, T. Huang, L. Xu, X. Guan, L. Zhang, “For: Pesticide biochemistry and physiology recG is involved with the resistance of Bt to UV,” Pesticide Biochemistry and Physiology, vol. 167, p. 104599, 2020.
  • [7] P. O. Nyangaresi, Y. Qina, G. Chen, B. Zhang, Y. Lu, L. Shen, “Comparison of UV-LED photolytic and UV-LED/TiO2 photocatalytic disinfection for Escherichia coli in water,” Catalysis Today, vol. 335, pp. 200-207, 2019.
  • [8] Y. Muramoto, M. Kimura, S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semiconductor Science and Technology, vol. 29, no. 8, p. 084004, 2014.
  • [9] M. A. S. Ibrahim, J. MacAdam, O. Autin, B. Jefferson, “Evaluating the Impact of LED Bulb Development on the Economic Viability of Ultraviolet Technology for Disinfection,” Environmental Technology, vol. 35, pp. 400–406, 2014.
  • [10] A. Khan, K. Balakrishnan, T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nature Photonics, vol. 2, pp. 77-84, 2008.
  • [11] M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semiconductor Science and Technology, vol. 26, pp. 014036, 2011.
  • [12] L. Dimitrocenko, J. Grube, P. Kulis, G. Marcins, B. Polyakov, A. Sarakovskis, M. Springis, I. Tale, “AlGaN–InGaN–GaN Near Ultraviolet Light Emitting Diode,” Latvian Journal of Physics and Technical Sciences, vol. 45, no. 4, 2008.
  • [13] Y. Li, Z. Xing, Y. Zheng, X. Tang, W. Xie, X. Chen, W. Wang, G. Li, “High-efficiency near-UV light-emitting diodes on Si substrates with InGaN/GaN/AlGaN/GaN multiple quantum wells” Journal of Materials Chemistry C, vol. 8, no. 3, pp. 883-888, 2020.
  • [14] L. R. Chen, S. C. Huang, J. L. Chiu, C. C. Lu, W. M. Su, C. Y. Weng, H. Y. Shen, T. C. Lu, H. Chen, “Degradation mechanisms of bias stress on nitride-based near-ultraviolet light-emitting diodes in salt water vapor ambient,” Microelectronic Engineering, vol. 218, no. 111158, 2019.
  • [15] M. A. Khan, “AlGaN multiple quantum well based deep UV LEDs and their applications,” Physica Status Solidi A, vol. 203, no. 7, pp. 1764-1770, 2006.
  • [16] A. Sandhu, “The future of ultraviolet LEDs,” Nature Photonics, vol. 1, no. 1, p. 38, 2007.
  • [17] P. Li, H. Li, L. Wang, X. Yi, G. Wang, “High Quantum Efficiency and Low Droop of 400-nm InGaN Near-Ultraviolet Light-Emitting Diodes Through Suppressed Leakage Current,” IEEE Journal of Quantum Electronics, vol. 51, no. 9, p. 3300605, 2015.
  • [18] A. B. M. H. Islam, D. S. Shim, J. I. Shim, “Enhanced Radiative Recombination Rate by Local Potential Fluctuation in InGaN/AlGaN Near-Ultraviolet Light-Emitting Diodes,” Applied Sciences, vol. 9, no. 5, p. 871, 2019.
  • [19] H. Hu, S. Zhou, X. Liu, G. Yilin, C. Gui, S. Liu, “Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes,” Scientific Reports, vol. 7, p. 44627, 2017.
  • [20] X. H. Yong, C. X. Fang, P. Yan, X. M. Sheng, S. Yan, H. X. Bo, X. X. Gang, “Progress in research of GaN-based LEDs fabricated on SiC substrate,” Chinese Physics B, vol. 24, no. 6, p. 067305, 2015.
  • [21] M. Lee, M. Yang, K. M. Song, S. Park, “InGaN/GaN Blue Light Emitting Diodes Using Freestanding GaN Extracted from a Si Substrate,” American Chemical Society Photonics, vol. 5, no. 4, pp. 1453–1459, 2018.
  • [22] V. K. Malyutenko O. Y. Malyutenko, “Do we need to recalibrate our strategy in InGaN-on-SiC LED technology given its low efficiency,” Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 9768, p. 97681N, 2016.
  • [23] M. Kim, T. Fujita, S. Fukahori, T. Inazu, C. Pernot, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, T. Takeuchi, S. Kamiyama, M. Yamaguchi, Y. Honda, H. Amano, I. Akasaki, “AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Fabricated on Patterned Sapphire Substrates,” Applied Physics Express, vol. 4, no. 9, p. 092102, 2011.
  • [24] T. Takayoshi, M. Takuya, S. Jun, N. Norimichi, T. Kenji, H. Hideki, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Applied Physics Express, vol. 10, no. 3, p. 031002, 2017.
  • [25] W. Lee, M. H. Kim, D. Zhu, A. N. Noemaun, J. K. Kim, E. F. Schubert, “Growth and characteristics of GaInN/GaInN multiple quantum well light-emitting diodes,” Journal of Applied Physics, vol. 107, p. 063102, 2010.
  • [26] W. Y. Ching, Y. N. Xu, P. Rulis, L. Ouyang, “The electronic structure and spectroscopic properties of 3C, 2H, 4H, 6H, 15R and 21R polymorphs of SiC,” Materials Science and Engineering: A, vol. 422, no. 1-2, pp. 147-156, 2006.
  • [27] P. Tao, H. Liang, X. Xia, Y. Liu, J. Jiang, H. Huang, Q. Feng, R. Shen, Y. Luo, G. Du, “Enhanced output power of near-ultraviolet LEDs with AlGaN/GaN distributed Bragg reflectors on 6H–SiC by metal-organic chemical vapor deposition” Superlattices and Microstructures, vol.85, pp. 482-487, 2015.
  • [28] C. Yao, X. Ye, R. Sun, G. Yang, J. Wang, Y. Lu, P. Yan, J. Cao, S. Gao, “High-performance AlGaN-based solar-blind avalanche photodiodes with dual-periodic III–nitride distributed Bragg reflectors,” Applied Physics Express, vol. 10, no. 3, p. 034302, 2017.
  • [29] X. Lu, J. Li, K. Su, C. Ge, Z. Li, T. Zhan, G. Wang, J. Li, “Performance-Enhanced 365 nm UV LEDs with Electrochemically Etched Nanoporous AlGaN Distributed Bragg Reflectors,” Nanomaterials, vol. 9, no. 6, p. 862, 2019.
  • [30] A. Trellakis, T. Zibold, T. Andlauer, S. Birner, R. K. Smith, R. Morschl, P. Vogl, “The 3D nanometer device project nextnano: Concepts, methods, results” Journal of Computational Electronics, vol. 5, pp. 285–289, 2006.
  • [31] S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, P. Vogl, “Nextnano: General Purpose 3-D Simulations,” IEEE Transactions on Electron Devices, vol. 54, no. 9, pp. 2137-2142, 2007.
  • [32] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” Journal of Physics: Condensed Matter, vol. 14, no. 11, p. 2717, 2002.
  • [33] S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Optics Express, vol. 8, no. 3, pp. 173-190, 2001.
  • [34] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications, vol. 181, no. 3, pp. 687-702, 2010.
  • [35] Y. R. Wu, C. Y. Huang, Y. Zhao, J. Speck, “Nonpolar and semipolar LEDs,” in Nitride Semiconductor Light-Emitting Diodes (LEDs) -Materials, Technologies, and Applications- Woodhead Publishing Series in Electronic and Optical Materials, J. Huang, H.-C. Kuo, and S.-C. Shen, Eds. second ed., Cambridge, United Kingdom: Woodhead Pub., 2018, pp. 273-295.
  • [36] Z. H. Zhang, Y. Zhang, W. Bi, H. V. Demir, X. W. Sun, “On the internal quantum efficiency for InGaN/GaN light‐emitting diodes grown on insulating substrates,” Physica Status Solidi A, vol. 213, no. 12, pp. 3078-3102, 2016.
  • [37] C. Haller, J. F. Carlin, G. Jacopin, D. Martin, R. Butte, N. Grandjean, “Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency,” Applied Physics Letters, vol. 111, p. 262101, 2017.
  • [38] S. Pearton, GaN and ZnO-based Materials and Devices. Gainesville, USA: Springer, 2012.
  • [39] S. Chiaria, E. Furno, M. Goano, E. Bellotti, “Design Criteria for Near-Ultraviolet GaN-Based Light-Emitting Diodes,” IEEE Transactions on Electron Devices, vol. 57, no. 1, pp. 60-70, 2010.
  • [40] R. Ramesh, P. Arivazhagan, M. Jayasakthi, R. Loganthan, K. Prabakaran, B. Kuppuligam, M. Balaji, K. Baskar, “Structural optical and electrical studies of AlGaN/GaN heterostructures with AlN interlayer grown on sapphire substrate by MOCVD,” in Physics of Semiconductor Devices, V. K. Jain and A. Verma, Eds. first ed., New York, USA: Springer, 2013, pp. 119-120.
  • [41] M. E. Zvanut, Y. Uprety, J. Dashdorj, M. Moseley, W. A. Doolittle, “Passivation and activation of Mg acceptors in heavily doped GaN” Journal of Applied Physics, vol. 110, no. 4, p. 044508, 2001.
  • [42] H. Hu, S. Zhou, X. Liu, Y. Gao, C. Gui, S. Liu, “Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes,” Scientific Reports, vol.7, p. 44627, 2017.
  • [43] S. Z. Aftab, N. Khalid, “A novel approach to enhance performance efficiency of AlGaN/InGaN based MQW LED in UV-region,” 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2019, pp. 20-25.
  • [44] X. A. Cao, S. F. LeBoeuf, M. P. D’Evelyn, S. D. Arthur, J. Kretchmer, “Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates,” Applied Physics Letters, vol. 84, p. 4313, 2004.
  • [45] H. Hirayama, K. Akita, T. Kyono, T. Nakamura, K. Ishibashi, “High-efficiency 352 nm quaternary InAlGaN-based ultraviolet light-emitting diodes grown on GaN substrates” The Japan Society of Applied Physics, vol. 43, no. 10, p. L1241, 2004.
  • [46] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Physical Review Letters, vol. 100, no. 136406, 2008.
  • [47] L. S. Pedroza, J. R. Silva, K. Capelle, “Gradient-dependent density functionals of the Perdew-Burke-Ernzerhof type for atoms, molecules, and solids,” Physical Review B, vol. 79, no. 201106, 2009.
  • [48] P. Haas, F. Tran, P. Blaha, “Calculation of the lattice constant of solids with semilocal functionals,” Physical Review B, vol. 79, no. 085104, 2009.
  • [49] L. Schimka, J. Harl, G. Kresse, “Improved hybrid functional for solids: The HSEsol functional,” Journal of Chemical Physics, vol. 134, p. 024116, 2011.
  • [50] H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations” Physical Review B, vol. 13, p. 5188, 1976.
  • [51] A. Bauer, P. Reischauer, J. Krausslich, N. Schell, W. Matz, K. Goetz, “Structure refinement of the silicon carbide polytypes 4H and 6H: unambiguous determination of the refinement parameters,” Acta Crystallographica Section A, vol. 57, pp. 60-67, 2001.
  • [52] G. C. Capitani, S. D. Pierro, G. Tempesta, “The 6H-SiC structure model: Further refinement from SCXRD data from a terrestrial moissanite,” American Mineralogist, vol. 92, no. 2-3, pp. 403–407, 2007.
  • [53] A. D. Alvarenga, M. Grimsditch, “Raman scattering from cubic boron nitride up to 1600 K,” Journal of Applied Physics, vol. 72, p. 1955, 1992.
  • [54] H. Schulz, K. H. Thiemann, “Crystal structure refinement of AlN and GaN,” Solid State Communications, vol. 23, no. 11, pp. 815-819, 1977.
  • [55] M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. New York, USA: John Wiley & Sons, Inc., 2001.
  • [56] J. Li, K. B. Nam, M. L. Nakarmi, J. Y. Lin, H. X. Jiang, “Band structure and fundamental optical transitions in wurtzite AlN,” Applied Physics Letters, vol. 83, p. 5163, 2003.
  • [57] S. Strite H. Morkoç, “GaN, AlN, and InN: A review,” Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 10, p. 1237, 1992.
  • [58] M. Feneberg, S. Osterburg, M. F. Romero, B. Garke, R. Goldhahn, M. D. Neumann, J. Yan, J. Zeng, J. Wang, J. Li, “Optical properties of magnesium doped AlxGa1− xN (0.61≤x≤ 0.73),” Journal of Applied Physics, vol. 116, no. 14, p. 143103, 2014.
  • [59] C. Buchheim, R. Goldhahn, M. Rakel, C. Cobet, N. Esser, U. Rossow, D. Fuhrmann, A. Hangleiter, “Dielectric function and critical points of the band structure for AlGaN alloys,” Physica Status Solidi (b), vol. 242, no. 13, pp. 2610-2616, 2005.
  • [60] J. F. Muth, J. D. Brown, M. A. L. Johnson, Z. Yu, R. M. Kolbas, J. W. Cook, J. F. Schetzina, “Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys,” Materials Research Society Internet Journal of Nitride Semiconductor Research, vol. 4, no. S1, pp. 502-507, 1999.
  • [61] P. Prajoon, D. Nirmal, M. A. Menokey, J. C. Pravin, “Efficiency Enhancement of InGaN MQW LED Using Compositionally Step Graded InGaN Barrier on SiC Substrate,” Journal of Display Technology, vol. 12, no. 10, p. 1237, 2016.
  • [62] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, vol. 77, no. 3865, p. 1396, 1996.
  • [63] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, “First principles methods using CASTEP,” Zeitschrift für Kristallographie - Crystalline Materials, vol. 220, no. 5-6, pp. 567-570, 2009.
  • [64] C. Chen, K. C. Cheng, E. Chagarov, J. Kanicki, “Crystalline In–Ga–Zn–O Density of States and Energy Band Structure Calculation Using Density Function Theory,” Japanese Journal of Applied Physics, vol. 50, no. 9, p. 091102, 2011.
  • [65] J. M. M. Duart, R. J. M. Palma, F. A. Rueda, Nanotechnology for Microelectronics and Optoelectronic. Amsterdam, The Netherlands: Elsevier, 2006.
  • [66] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Physical Review B, vol. 41, p. 7892, 1990.
  • [67] J. M. Hu, S. P. Huang, Z. Xie, H. Hu, W. D. Cheng, “First-principles study of the elastic and optical properties of the pseudocubic Si3As4, Ge3As4 and Sn3As4,” Journal of Physics: Condensed Matter, vol. 19, no. 49, p. 496215, 2007.
  • [68] R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Optics Communications, vol. 182, no. 4-6, pp. 273-279, 2000.
  • [69] G. Liu, J. Zhang, C. K. Tan, N. Tansu, “Efficiency-Droop Suppression by Using Large-Bandgap AlGaInN Thin Barrier Layers in InGaN Quantum-Well Light-Emitting Diodes,” IEEE Photonics Journal, vol. 5, no. 2, p. 2201011, 2013.
  • [70] S. Xu, C. Xu, Y. Liu, Y. Hu, R. Yang, Q. Yang, J. H. Ryou, H. J. Kim, Z. Lochner, S. Choi, R. Dupuis, Z. L. Wang, “Ordered Nanowire Array Blue/Near‐UV Light Emitting Diodes,” Advanced Materials, vol. 22, no. 42, pp. 4749-4753, 2010.
  • [71] W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nature Communications, vol. 4, p. 2661, 2013.
  • [72] C. Jia, T. Yu, X. Feng, K. Wang, G. Zhang, “Performance improvement of GaN-based near-UV LEDs with InGaN/AlGaN superlattices strain relief layer and AlGaN barrier,” Superlattices and Microstructures, vol. 97, pp. 417-423, 2016.
  • [73] H. Morkoç, Ü. Özgür, “Zinc Oxide: Fundamentals, Materials and Device Technology,” Weinheim, Germany: John Wiley & Sons, 2008.
  • [74] V. Laino, F. Roemer, B. Witzigmann, C. Lauterbach, Ulrich T. Schwarz, C. Rumbolz, M. O. Schillgalies, M. Furitsch, A. Lell, V. Harle, “Substrate modes of (Al, In) GaN semiconductor laser diodes on SiC and GaN substrates,” IEEE Journal of Quantum Electronics, vol. 43, no. 1, pp. 16-24, 2007.
  • [75] G. A. Smolyakov, P. G. Eliseev, M. Osinski, “Effects of resonant mode coupling on optical Characteristics of InGaN-GaN-AlGaN lasers,” IEEE Journal of Quantum Electronics, vol. 41, no. 4, pp. 517-524, 2005.
  • [76] H. Y. Peng, M. D. McCluskey, Y. M. Gupta, M. Kneissl, N. M. Johnson, “The Franz–Keldysh effect in shocked GaN: Mg,” Applied Physics Letters, vol. 82, no. 13, pp. 2085-2087, 2003.
  • [77] S. R. Bhattacharyya, A. K. Pal, “Electrical and optical properties of silicon-doped gallium nitride polycrystalline films,” Bulletin of Materials Science, vol. 31, no. 1, pp. 73-82, 2008.
  • [78] J. Piprek, H. Wenzel, M. Kneissl, “Analysis of wavelength-dependent performance variations of GaN-based ultraviolet lasers,” International Society for Optics and Photonics In Optoelectronic Devices: Physics, Fabrication, and Application IV, vol. 6766, p. 67660, 2007.
  • [79] O. Ambacher, W. Rieger, P. Ansmann, H. Angerer, T. D. Moustakas, M. Stutzmann, “Sub-bandgap absorption of gallium nitride determined by photothermal deflection spectroscopy,” Solid State Communications, vol. 97, no. 5, pp. 365-370, 1996.
  • [80] A. Cremades, L. Görgens, O. Ambacher, M. Stutzmann, F. Scholz, “Structural and optical properties of Si-doped GaN,” Physical Review B, vol. 61, no. 4, p. 2812, 2000.
Year 2023, , 94 - 112, 28.02.2023
https://doi.org/10.16984/saufenbilder.1051252

Abstract

References

  • [1] X. Han, Y. Zhang, P. Li, L. Yan, G. Deng, L. Chen, Y. Yu, J. Yin, “Fabrication of vertically conducting near ultraviolet LEDs on SiC substrates,” Superlattices and Microstructures, vol. 125, pp. 348-355, 2018.
  • [2] T. Wu, Q. Zha, W. Chen, Z. Xu, T. Wang, X. He, “Development and deployment of a cavity enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO2 in Hong Kong,” Atmospheric Environment, vol. 95, pp. 544-55, 2014.
  • [3] A. M. Suhail, M. J. Khalifa, N. M. Saeed, O. A. Ibrahim, “White light generation from CdS nanoparticles illuminated by UV-LED,” The European Physical Journal Applied Physics, vol. 49, p. 30601, 2010.
  • [4] O. Rodenko, H. Fodgaard, P. T. Lichtenberg, M. Petersen, C. Pedersen, “340 nm pulsed UV LED system for europium-based time-resolved fluorescence detection of immunoassays,” Optics Express, vol. 24, no. 19, pp. 22135-22143, 2016.
  • [5] Y. Thana, A. Ngamjarurojana, D. Boonyawan, “Analysis of cold atmospheric-pressure bio-medicine plasmas by using UV absorption spectroscopy,” Surface & Coatings Technology, vol. 306, pp. 106-112, 2016.
  • [6] J. Xu, C. Wu, Z. Yang, W. Liu, H. Chen, K. Batool, J. Yao, X. Fan, J. Wu, W. Rao, T. Huang, L. Xu, X. Guan, L. Zhang, “For: Pesticide biochemistry and physiology recG is involved with the resistance of Bt to UV,” Pesticide Biochemistry and Physiology, vol. 167, p. 104599, 2020.
  • [7] P. O. Nyangaresi, Y. Qina, G. Chen, B. Zhang, Y. Lu, L. Shen, “Comparison of UV-LED photolytic and UV-LED/TiO2 photocatalytic disinfection for Escherichia coli in water,” Catalysis Today, vol. 335, pp. 200-207, 2019.
  • [8] Y. Muramoto, M. Kimura, S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp,” Semiconductor Science and Technology, vol. 29, no. 8, p. 084004, 2014.
  • [9] M. A. S. Ibrahim, J. MacAdam, O. Autin, B. Jefferson, “Evaluating the Impact of LED Bulb Development on the Economic Viability of Ultraviolet Technology for Disinfection,” Environmental Technology, vol. 35, pp. 400–406, 2014.
  • [10] A. Khan, K. Balakrishnan, T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nature Photonics, vol. 2, pp. 77-84, 2008.
  • [11] M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semiconductor Science and Technology, vol. 26, pp. 014036, 2011.
  • [12] L. Dimitrocenko, J. Grube, P. Kulis, G. Marcins, B. Polyakov, A. Sarakovskis, M. Springis, I. Tale, “AlGaN–InGaN–GaN Near Ultraviolet Light Emitting Diode,” Latvian Journal of Physics and Technical Sciences, vol. 45, no. 4, 2008.
  • [13] Y. Li, Z. Xing, Y. Zheng, X. Tang, W. Xie, X. Chen, W. Wang, G. Li, “High-efficiency near-UV light-emitting diodes on Si substrates with InGaN/GaN/AlGaN/GaN multiple quantum wells” Journal of Materials Chemistry C, vol. 8, no. 3, pp. 883-888, 2020.
  • [14] L. R. Chen, S. C. Huang, J. L. Chiu, C. C. Lu, W. M. Su, C. Y. Weng, H. Y. Shen, T. C. Lu, H. Chen, “Degradation mechanisms of bias stress on nitride-based near-ultraviolet light-emitting diodes in salt water vapor ambient,” Microelectronic Engineering, vol. 218, no. 111158, 2019.
  • [15] M. A. Khan, “AlGaN multiple quantum well based deep UV LEDs and their applications,” Physica Status Solidi A, vol. 203, no. 7, pp. 1764-1770, 2006.
  • [16] A. Sandhu, “The future of ultraviolet LEDs,” Nature Photonics, vol. 1, no. 1, p. 38, 2007.
  • [17] P. Li, H. Li, L. Wang, X. Yi, G. Wang, “High Quantum Efficiency and Low Droop of 400-nm InGaN Near-Ultraviolet Light-Emitting Diodes Through Suppressed Leakage Current,” IEEE Journal of Quantum Electronics, vol. 51, no. 9, p. 3300605, 2015.
  • [18] A. B. M. H. Islam, D. S. Shim, J. I. Shim, “Enhanced Radiative Recombination Rate by Local Potential Fluctuation in InGaN/AlGaN Near-Ultraviolet Light-Emitting Diodes,” Applied Sciences, vol. 9, no. 5, p. 871, 2019.
  • [19] H. Hu, S. Zhou, X. Liu, G. Yilin, C. Gui, S. Liu, “Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes,” Scientific Reports, vol. 7, p. 44627, 2017.
  • [20] X. H. Yong, C. X. Fang, P. Yan, X. M. Sheng, S. Yan, H. X. Bo, X. X. Gang, “Progress in research of GaN-based LEDs fabricated on SiC substrate,” Chinese Physics B, vol. 24, no. 6, p. 067305, 2015.
  • [21] M. Lee, M. Yang, K. M. Song, S. Park, “InGaN/GaN Blue Light Emitting Diodes Using Freestanding GaN Extracted from a Si Substrate,” American Chemical Society Photonics, vol. 5, no. 4, pp. 1453–1459, 2018.
  • [22] V. K. Malyutenko O. Y. Malyutenko, “Do we need to recalibrate our strategy in InGaN-on-SiC LED technology given its low efficiency,” Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 9768, p. 97681N, 2016.
  • [23] M. Kim, T. Fujita, S. Fukahori, T. Inazu, C. Pernot, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, T. Takeuchi, S. Kamiyama, M. Yamaguchi, Y. Honda, H. Amano, I. Akasaki, “AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Fabricated on Patterned Sapphire Substrates,” Applied Physics Express, vol. 4, no. 9, p. 092102, 2011.
  • [24] T. Takayoshi, M. Takuya, S. Jun, N. Norimichi, T. Kenji, H. Hideki, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Applied Physics Express, vol. 10, no. 3, p. 031002, 2017.
  • [25] W. Lee, M. H. Kim, D. Zhu, A. N. Noemaun, J. K. Kim, E. F. Schubert, “Growth and characteristics of GaInN/GaInN multiple quantum well light-emitting diodes,” Journal of Applied Physics, vol. 107, p. 063102, 2010.
  • [26] W. Y. Ching, Y. N. Xu, P. Rulis, L. Ouyang, “The electronic structure and spectroscopic properties of 3C, 2H, 4H, 6H, 15R and 21R polymorphs of SiC,” Materials Science and Engineering: A, vol. 422, no. 1-2, pp. 147-156, 2006.
  • [27] P. Tao, H. Liang, X. Xia, Y. Liu, J. Jiang, H. Huang, Q. Feng, R. Shen, Y. Luo, G. Du, “Enhanced output power of near-ultraviolet LEDs with AlGaN/GaN distributed Bragg reflectors on 6H–SiC by metal-organic chemical vapor deposition” Superlattices and Microstructures, vol.85, pp. 482-487, 2015.
  • [28] C. Yao, X. Ye, R. Sun, G. Yang, J. Wang, Y. Lu, P. Yan, J. Cao, S. Gao, “High-performance AlGaN-based solar-blind avalanche photodiodes with dual-periodic III–nitride distributed Bragg reflectors,” Applied Physics Express, vol. 10, no. 3, p. 034302, 2017.
  • [29] X. Lu, J. Li, K. Su, C. Ge, Z. Li, T. Zhan, G. Wang, J. Li, “Performance-Enhanced 365 nm UV LEDs with Electrochemically Etched Nanoporous AlGaN Distributed Bragg Reflectors,” Nanomaterials, vol. 9, no. 6, p. 862, 2019.
  • [30] A. Trellakis, T. Zibold, T. Andlauer, S. Birner, R. K. Smith, R. Morschl, P. Vogl, “The 3D nanometer device project nextnano: Concepts, methods, results” Journal of Computational Electronics, vol. 5, pp. 285–289, 2006.
  • [31] S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, P. Vogl, “Nextnano: General Purpose 3-D Simulations,” IEEE Transactions on Electron Devices, vol. 54, no. 9, pp. 2137-2142, 2007.
  • [32] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” Journal of Physics: Condensed Matter, vol. 14, no. 11, p. 2717, 2002.
  • [33] S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Optics Express, vol. 8, no. 3, pp. 173-190, 2001.
  • [34] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications, vol. 181, no. 3, pp. 687-702, 2010.
  • [35] Y. R. Wu, C. Y. Huang, Y. Zhao, J. Speck, “Nonpolar and semipolar LEDs,” in Nitride Semiconductor Light-Emitting Diodes (LEDs) -Materials, Technologies, and Applications- Woodhead Publishing Series in Electronic and Optical Materials, J. Huang, H.-C. Kuo, and S.-C. Shen, Eds. second ed., Cambridge, United Kingdom: Woodhead Pub., 2018, pp. 273-295.
  • [36] Z. H. Zhang, Y. Zhang, W. Bi, H. V. Demir, X. W. Sun, “On the internal quantum efficiency for InGaN/GaN light‐emitting diodes grown on insulating substrates,” Physica Status Solidi A, vol. 213, no. 12, pp. 3078-3102, 2016.
  • [37] C. Haller, J. F. Carlin, G. Jacopin, D. Martin, R. Butte, N. Grandjean, “Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency,” Applied Physics Letters, vol. 111, p. 262101, 2017.
  • [38] S. Pearton, GaN and ZnO-based Materials and Devices. Gainesville, USA: Springer, 2012.
  • [39] S. Chiaria, E. Furno, M. Goano, E. Bellotti, “Design Criteria for Near-Ultraviolet GaN-Based Light-Emitting Diodes,” IEEE Transactions on Electron Devices, vol. 57, no. 1, pp. 60-70, 2010.
  • [40] R. Ramesh, P. Arivazhagan, M. Jayasakthi, R. Loganthan, K. Prabakaran, B. Kuppuligam, M. Balaji, K. Baskar, “Structural optical and electrical studies of AlGaN/GaN heterostructures with AlN interlayer grown on sapphire substrate by MOCVD,” in Physics of Semiconductor Devices, V. K. Jain and A. Verma, Eds. first ed., New York, USA: Springer, 2013, pp. 119-120.
  • [41] M. E. Zvanut, Y. Uprety, J. Dashdorj, M. Moseley, W. A. Doolittle, “Passivation and activation of Mg acceptors in heavily doped GaN” Journal of Applied Physics, vol. 110, no. 4, p. 044508, 2001.
  • [42] H. Hu, S. Zhou, X. Liu, Y. Gao, C. Gui, S. Liu, “Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes,” Scientific Reports, vol.7, p. 44627, 2017.
  • [43] S. Z. Aftab, N. Khalid, “A novel approach to enhance performance efficiency of AlGaN/InGaN based MQW LED in UV-region,” 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2019, pp. 20-25.
  • [44] X. A. Cao, S. F. LeBoeuf, M. P. D’Evelyn, S. D. Arthur, J. Kretchmer, “Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates,” Applied Physics Letters, vol. 84, p. 4313, 2004.
  • [45] H. Hirayama, K. Akita, T. Kyono, T. Nakamura, K. Ishibashi, “High-efficiency 352 nm quaternary InAlGaN-based ultraviolet light-emitting diodes grown on GaN substrates” The Japan Society of Applied Physics, vol. 43, no. 10, p. L1241, 2004.
  • [46] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Physical Review Letters, vol. 100, no. 136406, 2008.
  • [47] L. S. Pedroza, J. R. Silva, K. Capelle, “Gradient-dependent density functionals of the Perdew-Burke-Ernzerhof type for atoms, molecules, and solids,” Physical Review B, vol. 79, no. 201106, 2009.
  • [48] P. Haas, F. Tran, P. Blaha, “Calculation of the lattice constant of solids with semilocal functionals,” Physical Review B, vol. 79, no. 085104, 2009.
  • [49] L. Schimka, J. Harl, G. Kresse, “Improved hybrid functional for solids: The HSEsol functional,” Journal of Chemical Physics, vol. 134, p. 024116, 2011.
  • [50] H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations” Physical Review B, vol. 13, p. 5188, 1976.
  • [51] A. Bauer, P. Reischauer, J. Krausslich, N. Schell, W. Matz, K. Goetz, “Structure refinement of the silicon carbide polytypes 4H and 6H: unambiguous determination of the refinement parameters,” Acta Crystallographica Section A, vol. 57, pp. 60-67, 2001.
  • [52] G. C. Capitani, S. D. Pierro, G. Tempesta, “The 6H-SiC structure model: Further refinement from SCXRD data from a terrestrial moissanite,” American Mineralogist, vol. 92, no. 2-3, pp. 403–407, 2007.
  • [53] A. D. Alvarenga, M. Grimsditch, “Raman scattering from cubic boron nitride up to 1600 K,” Journal of Applied Physics, vol. 72, p. 1955, 1992.
  • [54] H. Schulz, K. H. Thiemann, “Crystal structure refinement of AlN and GaN,” Solid State Communications, vol. 23, no. 11, pp. 815-819, 1977.
  • [55] M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. New York, USA: John Wiley & Sons, Inc., 2001.
  • [56] J. Li, K. B. Nam, M. L. Nakarmi, J. Y. Lin, H. X. Jiang, “Band structure and fundamental optical transitions in wurtzite AlN,” Applied Physics Letters, vol. 83, p. 5163, 2003.
  • [57] S. Strite H. Morkoç, “GaN, AlN, and InN: A review,” Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 10, p. 1237, 1992.
  • [58] M. Feneberg, S. Osterburg, M. F. Romero, B. Garke, R. Goldhahn, M. D. Neumann, J. Yan, J. Zeng, J. Wang, J. Li, “Optical properties of magnesium doped AlxGa1− xN (0.61≤x≤ 0.73),” Journal of Applied Physics, vol. 116, no. 14, p. 143103, 2014.
  • [59] C. Buchheim, R. Goldhahn, M. Rakel, C. Cobet, N. Esser, U. Rossow, D. Fuhrmann, A. Hangleiter, “Dielectric function and critical points of the band structure for AlGaN alloys,” Physica Status Solidi (b), vol. 242, no. 13, pp. 2610-2616, 2005.
  • [60] J. F. Muth, J. D. Brown, M. A. L. Johnson, Z. Yu, R. M. Kolbas, J. W. Cook, J. F. Schetzina, “Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys,” Materials Research Society Internet Journal of Nitride Semiconductor Research, vol. 4, no. S1, pp. 502-507, 1999.
  • [61] P. Prajoon, D. Nirmal, M. A. Menokey, J. C. Pravin, “Efficiency Enhancement of InGaN MQW LED Using Compositionally Step Graded InGaN Barrier on SiC Substrate,” Journal of Display Technology, vol. 12, no. 10, p. 1237, 2016.
  • [62] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, vol. 77, no. 3865, p. 1396, 1996.
  • [63] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, “First principles methods using CASTEP,” Zeitschrift für Kristallographie - Crystalline Materials, vol. 220, no. 5-6, pp. 567-570, 2009.
  • [64] C. Chen, K. C. Cheng, E. Chagarov, J. Kanicki, “Crystalline In–Ga–Zn–O Density of States and Energy Band Structure Calculation Using Density Function Theory,” Japanese Journal of Applied Physics, vol. 50, no. 9, p. 091102, 2011.
  • [65] J. M. M. Duart, R. J. M. Palma, F. A. Rueda, Nanotechnology for Microelectronics and Optoelectronic. Amsterdam, The Netherlands: Elsevier, 2006.
  • [66] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Physical Review B, vol. 41, p. 7892, 1990.
  • [67] J. M. Hu, S. P. Huang, Z. Xie, H. Hu, W. D. Cheng, “First-principles study of the elastic and optical properties of the pseudocubic Si3As4, Ge3As4 and Sn3As4,” Journal of Physics: Condensed Matter, vol. 19, no. 49, p. 496215, 2007.
  • [68] R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Optics Communications, vol. 182, no. 4-6, pp. 273-279, 2000.
  • [69] G. Liu, J. Zhang, C. K. Tan, N. Tansu, “Efficiency-Droop Suppression by Using Large-Bandgap AlGaInN Thin Barrier Layers in InGaN Quantum-Well Light-Emitting Diodes,” IEEE Photonics Journal, vol. 5, no. 2, p. 2201011, 2013.
  • [70] S. Xu, C. Xu, Y. Liu, Y. Hu, R. Yang, Q. Yang, J. H. Ryou, H. J. Kim, Z. Lochner, S. Choi, R. Dupuis, Z. L. Wang, “Ordered Nanowire Array Blue/Near‐UV Light Emitting Diodes,” Advanced Materials, vol. 22, no. 42, pp. 4749-4753, 2010.
  • [71] W. K. Bae, Y. S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, V. I. Klimov, “Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes,” Nature Communications, vol. 4, p. 2661, 2013.
  • [72] C. Jia, T. Yu, X. Feng, K. Wang, G. Zhang, “Performance improvement of GaN-based near-UV LEDs with InGaN/AlGaN superlattices strain relief layer and AlGaN barrier,” Superlattices and Microstructures, vol. 97, pp. 417-423, 2016.
  • [73] H. Morkoç, Ü. Özgür, “Zinc Oxide: Fundamentals, Materials and Device Technology,” Weinheim, Germany: John Wiley & Sons, 2008.
  • [74] V. Laino, F. Roemer, B. Witzigmann, C. Lauterbach, Ulrich T. Schwarz, C. Rumbolz, M. O. Schillgalies, M. Furitsch, A. Lell, V. Harle, “Substrate modes of (Al, In) GaN semiconductor laser diodes on SiC and GaN substrates,” IEEE Journal of Quantum Electronics, vol. 43, no. 1, pp. 16-24, 2007.
  • [75] G. A. Smolyakov, P. G. Eliseev, M. Osinski, “Effects of resonant mode coupling on optical Characteristics of InGaN-GaN-AlGaN lasers,” IEEE Journal of Quantum Electronics, vol. 41, no. 4, pp. 517-524, 2005.
  • [76] H. Y. Peng, M. D. McCluskey, Y. M. Gupta, M. Kneissl, N. M. Johnson, “The Franz–Keldysh effect in shocked GaN: Mg,” Applied Physics Letters, vol. 82, no. 13, pp. 2085-2087, 2003.
  • [77] S. R. Bhattacharyya, A. K. Pal, “Electrical and optical properties of silicon-doped gallium nitride polycrystalline films,” Bulletin of Materials Science, vol. 31, no. 1, pp. 73-82, 2008.
  • [78] J. Piprek, H. Wenzel, M. Kneissl, “Analysis of wavelength-dependent performance variations of GaN-based ultraviolet lasers,” International Society for Optics and Photonics In Optoelectronic Devices: Physics, Fabrication, and Application IV, vol. 6766, p. 67660, 2007.
  • [79] O. Ambacher, W. Rieger, P. Ansmann, H. Angerer, T. D. Moustakas, M. Stutzmann, “Sub-bandgap absorption of gallium nitride determined by photothermal deflection spectroscopy,” Solid State Communications, vol. 97, no. 5, pp. 365-370, 1996.
  • [80] A. Cremades, L. Görgens, O. Ambacher, M. Stutzmann, F. Scholz, “Structural and optical properties of Si-doped GaN,” Physical Review B, vol. 61, no. 4, p. 2812, 2000.
There are 80 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

İrem Alp 0000-0002-6937-7864

Bilgehan Barış Öner This is me 0000-0001-9440-2235

Esra Eroğlu This is me 0000-0002-6848-5142

Yasemin Çiftci 0000-0003-1796-0270

Publication Date February 28, 2023
Submission Date December 30, 2021
Acceptance Date December 5, 2022
Published in Issue Year 2023

Cite

APA Alp, İ., Öner, B. B., Eroğlu, E., Çiftci, Y. (2023). Quantum Efficiency Improvement of InGaN Near Ultraviolet LED Design by Genetic Algorithm. Sakarya University Journal of Science, 27(1), 94-112. https://doi.org/10.16984/saufenbilder.1051252
AMA Alp İ, Öner BB, Eroğlu E, Çiftci Y. Quantum Efficiency Improvement of InGaN Near Ultraviolet LED Design by Genetic Algorithm. SAUJS. February 2023;27(1):94-112. doi:10.16984/saufenbilder.1051252
Chicago Alp, İrem, Bilgehan Barış Öner, Esra Eroğlu, and Yasemin Çiftci. “Quantum Efficiency Improvement of InGaN Near Ultraviolet LED Design by Genetic Algorithm”. Sakarya University Journal of Science 27, no. 1 (February 2023): 94-112. https://doi.org/10.16984/saufenbilder.1051252.
EndNote Alp İ, Öner BB, Eroğlu E, Çiftci Y (February 1, 2023) Quantum Efficiency Improvement of InGaN Near Ultraviolet LED Design by Genetic Algorithm. Sakarya University Journal of Science 27 1 94–112.
IEEE İ. Alp, B. B. Öner, E. Eroğlu, and Y. Çiftci, “Quantum Efficiency Improvement of InGaN Near Ultraviolet LED Design by Genetic Algorithm”, SAUJS, vol. 27, no. 1, pp. 94–112, 2023, doi: 10.16984/saufenbilder.1051252.
ISNAD Alp, İrem et al. “Quantum Efficiency Improvement of InGaN Near Ultraviolet LED Design by Genetic Algorithm”. Sakarya University Journal of Science 27/1 (February 2023), 94-112. https://doi.org/10.16984/saufenbilder.1051252.
JAMA Alp İ, Öner BB, Eroğlu E, Çiftci Y. Quantum Efficiency Improvement of InGaN Near Ultraviolet LED Design by Genetic Algorithm. SAUJS. 2023;27:94–112.
MLA Alp, İrem et al. “Quantum Efficiency Improvement of InGaN Near Ultraviolet LED Design by Genetic Algorithm”. Sakarya University Journal of Science, vol. 27, no. 1, 2023, pp. 94-112, doi:10.16984/saufenbilder.1051252.
Vancouver Alp İ, Öner BB, Eroğlu E, Çiftci Y. Quantum Efficiency Improvement of InGaN Near Ultraviolet LED Design by Genetic Algorithm. SAUJS. 2023;27(1):94-112.