[1] A. Abalos, F. Maximo, M. A. Manresa, J. Bastida, “Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas aeruginosa AT10,” Journal of Chemical Technology and Biotechnology, vol. 77, pp. 777–784, 2002.
[2] K. R. A. Akbari, A. A. Ali, “Study of antimicrobial effects of several antibiotics and iron oxide nanoparticles on biofilm producing Pseudomonas aeruginosa,” Nanomedical Journal, vol. 4, no.1, pp. 37–43, 2017.
[3] G. Aouada, J. L. Crovisier, V. A. Geoffroy, J-M. Meyer, P. Stille, “Microbially-mediated glass dissolution and sorption of metals by Pseudomonas aeruginosa cells and biofilm,” Journal of Hazardous Materials B, vol. 136, pp. 889–895, 2006.
[4] E. Banin, M. L. Vasil, E.P. Greenberg, “Iron and Pseudomonas aeruginosa biofilm formation,” PNAS, vol. 102, no. 31, pp. 11076–11081, 2005.
[5] M. Benincasa, J. Contiero, M. A. Manresa, I. O. Moraes, “Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source,” Journal of Food Engineering, vol. 54, pp. 283–288, 2002.
[6] Y. Cai, R. Wang, M-M. An, B-B. Liang, “Iron-depletion prevents biofilm formation in Pseudomonas aeruginosa through twitching motility and quorum sensing,” Brazilian Journal of Microbiology, vol. 41, pp. 37–41, 2010.
[7] E. V. Chandrasekaran, J. N. Bemiller, “Constituent analysis of glycosaminoglycans,” In: Wrhiste L, Wolfrom ML. (eds) Methods in Carbohydrate Chemistry. New York: Vol III. Academic Press; pp. 89–97, 1980.
[8] W-J. Chen, T-Y. Kuo, F-C. Hsieh, P-Y. Chen, C-S. Wang, Y-L. Shih, Y-M. Lai, J-R. Liu, L-Y. Yang, M-C. Shih, “Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis,” Scientific Reports, vol. 6:32950, pp. 1-14, 2016.
[9] S. G. V. A. O. Costa, M. Nitschke, R. Haddad, M. N. Eberlin, J. Contiero, “Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils,” Process Biochemistry, vol. 41, pp. 483–488, 2006.
[10] S. Çam, R. Brinkmeyer, “The effects of temperature, pH, and iron on biofilm formation by clinical versus environmental strains of Vibrio vulnificus,” Folia Microbiologica, vol. 65, no.3, pp. 557–566, 2020.
[11] N. Gedara, J. Moutinho-Pereira, A. Malheiro, J. P. Coutinho, S. Bernardo, A. Luzio, L. Dinis, “Grapevine ecophysiology and berry’s quality: Best adapted varieties in Douro region terroir,” International Journal of Advances in Science Engineering and Technology, vol. 7, no. 4, pp. 65–70, 2019.
[12] R. Glick, C. Gilmour, J. Tremblay, S. Satanower, O. Avidan, E. De´ziel, P. Greenberg, K. Poole, E. Banin, “Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa,” Journal of Bacteriology, vol. 192, no. 12, pp. 2973–2980, 2010.
[13] P. N. Jimenez, G. Koch, E. Papaioannou, M. Wahjudi, J. Krzeslak, T. Coenye, R. H. Cool, W. J. Quax, “Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions,” Microbiology, vol. 156, pp. 49–59, 2010.
[14] A. Leyva, A. Quintana, M. Sanchez, E. N. Rodriguez, J. Cremata, J. C. Sanchez, “Rapid and sensitive anthrone -sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: Method development and validation,” Biologicals, vol. 36, no. 2, pp. 134–141, 2008.
[15] A. T. Nguyen, J. W. Jones, M. A. Ruge, M. A. Kane, A. G. Oglesby-Sherrouse, “Iron depletion enhances production of antimicrobials by Pseudomonas aeruginosa,” Journal of Bacteriology, vol. 197, no. 14, pp. 2265–2275, 2015.
[16] A. A. Reinhart, A. G Oglesby-Sherrouse, “Regulation of Pseudomonas aeruginosa Virulence by distinct iron sources,” Genes, vol. 7, no. 12, pp. 1–12, 2016.
[17] Z. Sahebnazar, D. Mowla, G. Karimi, “Enhancement of Pseudomonas aeruginosa growth and rhamnolipid production using iron-silica nanoparticles in low-cost medium,” Journal of Nanostructures, vol. 8, no. 1, pp. 1–10, 2018.
[18] S. S. Sasnow, H. Wei, L. Aristilde, “Bypasses in intracellular glucose metabolism in iron-limited Pseudomonas putida,” Microbiology Open, vol. 5, no. 1, pp. 3–20, 2016.
[19] K. T. Schiessl, E. M. Janssen, S. M. Kraemer, K. McNeill, M. Ackermann, “Magnitude and mechanism of siderophore-mediated competition at low iron solubility in the Pseudomonas aeruginosa pyochelin system,” Frontiers in Microbiology, vol. 8: 1964, pp. 1–11, 2017.
[20] F. Shatila, M. M. Diallo, U. Şahar, G. Özdemir, H. T. Yalçın, The effect of carbon, nitrogen and iron ions on mono‑rhamnolipid production and rhamnolipid synthesis gene expression by Pseudomonas aeruginosa ATCC 15442,” Archives of Microbiology, vol. 202, pp. 1407–1417, 2020.
[21] S. N. R. L. Silva, C. B. B. Fariasb, R. D. Rufinob, J. M. Lunab, L. A. Sarubbo, “Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992,” Colloidal Surface B, vol. 79, pp. 174–183, 2010.
[22] G. M. Teitzel, M. R. Parsek, “Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa,” Applied and Environmental Microbiolgy, vol. 69, pp. 2313–2320, 2003.
[23] R. Vyas, P. M. Maharshi, J. Pohnerkar, G. N. Kumar, “Vitreoscilla hemoglobin promotes biofilm expansion and mitigates sporulation in Bacillus subtilis DK1042,” 3 Biotechonology, vol. 10:118: pp. 1–7, 2020.
[24] Y. Zhang, X. Pan, L. Wang, L. Chen, “Iron metabolism in Pseudomonas aeruginosa biofilm and the involved iron-targeted anti-biofilm strategies,” Journal of Drug Targeting, vol. 29, no. 3, pp. 249–258, 2020.
Effect of Iron on Some Parameters Recombinant Pseudomonas aeruginosa Carrying Vitreoscilla Hemoglobin Gene
In this study, the effects of iron presence on some bacterial parameters of Pseudomonas aeruginosa and its recombinant bacteria carrying Vitreoscilla hemoglobin on its chromosome were investigated for the first time. These parameters are; optical density, pH, glucose, trehalose production and biomass. Parameters; It was studied at 37 °C and 250 rpm ventilated conditions depending on time. Bacteria have developed mechanisms by which they can resist heavy metal stress with many other mechanisms, including making metals less toxic and excreting them out of the cell. The Efflux system is the most widely used mechanism. The bacterium that makes the best use of these mechanisms is P. aeruginosa, which has an environmental and versatile feature. In the presence of LB alone, an increase was observed in the first 48 hours and a decrease of 43% in the other time periods, especially in the 96th hour compared to the control. The highest increase was detected in the 48th time periods, up to 259% in the 3,32. When iron was added to the medium, significant increases were observed in all time periods compared to the controls and these increases reached 575% at 72 hours. In the same time periods, the maximum value of OD600 4.55 was reached.
[1] A. Abalos, F. Maximo, M. A. Manresa, J. Bastida, “Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas aeruginosa AT10,” Journal of Chemical Technology and Biotechnology, vol. 77, pp. 777–784, 2002.
[2] K. R. A. Akbari, A. A. Ali, “Study of antimicrobial effects of several antibiotics and iron oxide nanoparticles on biofilm producing Pseudomonas aeruginosa,” Nanomedical Journal, vol. 4, no.1, pp. 37–43, 2017.
[3] G. Aouada, J. L. Crovisier, V. A. Geoffroy, J-M. Meyer, P. Stille, “Microbially-mediated glass dissolution and sorption of metals by Pseudomonas aeruginosa cells and biofilm,” Journal of Hazardous Materials B, vol. 136, pp. 889–895, 2006.
[4] E. Banin, M. L. Vasil, E.P. Greenberg, “Iron and Pseudomonas aeruginosa biofilm formation,” PNAS, vol. 102, no. 31, pp. 11076–11081, 2005.
[5] M. Benincasa, J. Contiero, M. A. Manresa, I. O. Moraes, “Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source,” Journal of Food Engineering, vol. 54, pp. 283–288, 2002.
[6] Y. Cai, R. Wang, M-M. An, B-B. Liang, “Iron-depletion prevents biofilm formation in Pseudomonas aeruginosa through twitching motility and quorum sensing,” Brazilian Journal of Microbiology, vol. 41, pp. 37–41, 2010.
[7] E. V. Chandrasekaran, J. N. Bemiller, “Constituent analysis of glycosaminoglycans,” In: Wrhiste L, Wolfrom ML. (eds) Methods in Carbohydrate Chemistry. New York: Vol III. Academic Press; pp. 89–97, 1980.
[8] W-J. Chen, T-Y. Kuo, F-C. Hsieh, P-Y. Chen, C-S. Wang, Y-L. Shih, Y-M. Lai, J-R. Liu, L-Y. Yang, M-C. Shih, “Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis,” Scientific Reports, vol. 6:32950, pp. 1-14, 2016.
[9] S. G. V. A. O. Costa, M. Nitschke, R. Haddad, M. N. Eberlin, J. Contiero, “Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils,” Process Biochemistry, vol. 41, pp. 483–488, 2006.
[10] S. Çam, R. Brinkmeyer, “The effects of temperature, pH, and iron on biofilm formation by clinical versus environmental strains of Vibrio vulnificus,” Folia Microbiologica, vol. 65, no.3, pp. 557–566, 2020.
[11] N. Gedara, J. Moutinho-Pereira, A. Malheiro, J. P. Coutinho, S. Bernardo, A. Luzio, L. Dinis, “Grapevine ecophysiology and berry’s quality: Best adapted varieties in Douro region terroir,” International Journal of Advances in Science Engineering and Technology, vol. 7, no. 4, pp. 65–70, 2019.
[12] R. Glick, C. Gilmour, J. Tremblay, S. Satanower, O. Avidan, E. De´ziel, P. Greenberg, K. Poole, E. Banin, “Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa,” Journal of Bacteriology, vol. 192, no. 12, pp. 2973–2980, 2010.
[13] P. N. Jimenez, G. Koch, E. Papaioannou, M. Wahjudi, J. Krzeslak, T. Coenye, R. H. Cool, W. J. Quax, “Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions,” Microbiology, vol. 156, pp. 49–59, 2010.
[14] A. Leyva, A. Quintana, M. Sanchez, E. N. Rodriguez, J. Cremata, J. C. Sanchez, “Rapid and sensitive anthrone -sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: Method development and validation,” Biologicals, vol. 36, no. 2, pp. 134–141, 2008.
[15] A. T. Nguyen, J. W. Jones, M. A. Ruge, M. A. Kane, A. G. Oglesby-Sherrouse, “Iron depletion enhances production of antimicrobials by Pseudomonas aeruginosa,” Journal of Bacteriology, vol. 197, no. 14, pp. 2265–2275, 2015.
[16] A. A. Reinhart, A. G Oglesby-Sherrouse, “Regulation of Pseudomonas aeruginosa Virulence by distinct iron sources,” Genes, vol. 7, no. 12, pp. 1–12, 2016.
[17] Z. Sahebnazar, D. Mowla, G. Karimi, “Enhancement of Pseudomonas aeruginosa growth and rhamnolipid production using iron-silica nanoparticles in low-cost medium,” Journal of Nanostructures, vol. 8, no. 1, pp. 1–10, 2018.
[18] S. S. Sasnow, H. Wei, L. Aristilde, “Bypasses in intracellular glucose metabolism in iron-limited Pseudomonas putida,” Microbiology Open, vol. 5, no. 1, pp. 3–20, 2016.
[19] K. T. Schiessl, E. M. Janssen, S. M. Kraemer, K. McNeill, M. Ackermann, “Magnitude and mechanism of siderophore-mediated competition at low iron solubility in the Pseudomonas aeruginosa pyochelin system,” Frontiers in Microbiology, vol. 8: 1964, pp. 1–11, 2017.
[20] F. Shatila, M. M. Diallo, U. Şahar, G. Özdemir, H. T. Yalçın, The effect of carbon, nitrogen and iron ions on mono‑rhamnolipid production and rhamnolipid synthesis gene expression by Pseudomonas aeruginosa ATCC 15442,” Archives of Microbiology, vol. 202, pp. 1407–1417, 2020.
[21] S. N. R. L. Silva, C. B. B. Fariasb, R. D. Rufinob, J. M. Lunab, L. A. Sarubbo, “Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992,” Colloidal Surface B, vol. 79, pp. 174–183, 2010.
[22] G. M. Teitzel, M. R. Parsek, “Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa,” Applied and Environmental Microbiolgy, vol. 69, pp. 2313–2320, 2003.
[23] R. Vyas, P. M. Maharshi, J. Pohnerkar, G. N. Kumar, “Vitreoscilla hemoglobin promotes biofilm expansion and mitigates sporulation in Bacillus subtilis DK1042,” 3 Biotechonology, vol. 10:118: pp. 1–7, 2020.
[24] Y. Zhang, X. Pan, L. Wang, L. Chen, “Iron metabolism in Pseudomonas aeruginosa biofilm and the involved iron-targeted anti-biofilm strategies,” Journal of Drug Targeting, vol. 29, no. 3, pp. 249–258, 2020.
Kahraman, H. (2022). Effect of Iron on Some Parameters Recombinant Pseudomonas aeruginosa Carrying Vitreoscilla Hemoglobin Gene. Sakarya University Journal of Science, 26(4), 805-812. https://doi.org/10.16984/saufenbilder.1096293
AMA
Kahraman H. Effect of Iron on Some Parameters Recombinant Pseudomonas aeruginosa Carrying Vitreoscilla Hemoglobin Gene. SAUJS. August 2022;26(4):805-812. doi:10.16984/saufenbilder.1096293
Chicago
Kahraman, Hüseyin. “Effect of Iron on Some Parameters Recombinant Pseudomonas Aeruginosa Carrying Vitreoscilla Hemoglobin Gene”. Sakarya University Journal of Science 26, no. 4 (August 2022): 805-12. https://doi.org/10.16984/saufenbilder.1096293.
EndNote
Kahraman H (August 1, 2022) Effect of Iron on Some Parameters Recombinant Pseudomonas aeruginosa Carrying Vitreoscilla Hemoglobin Gene. Sakarya University Journal of Science 26 4 805–812.
IEEE
H. Kahraman, “Effect of Iron on Some Parameters Recombinant Pseudomonas aeruginosa Carrying Vitreoscilla Hemoglobin Gene”, SAUJS, vol. 26, no. 4, pp. 805–812, 2022, doi: 10.16984/saufenbilder.1096293.
ISNAD
Kahraman, Hüseyin. “Effect of Iron on Some Parameters Recombinant Pseudomonas Aeruginosa Carrying Vitreoscilla Hemoglobin Gene”. Sakarya University Journal of Science 26/4 (August 2022), 805-812. https://doi.org/10.16984/saufenbilder.1096293.
JAMA
Kahraman H. Effect of Iron on Some Parameters Recombinant Pseudomonas aeruginosa Carrying Vitreoscilla Hemoglobin Gene. SAUJS. 2022;26:805–812.
MLA
Kahraman, Hüseyin. “Effect of Iron on Some Parameters Recombinant Pseudomonas Aeruginosa Carrying Vitreoscilla Hemoglobin Gene”. Sakarya University Journal of Science, vol. 26, no. 4, 2022, pp. 805-12, doi:10.16984/saufenbilder.1096293.
Vancouver
Kahraman H. Effect of Iron on Some Parameters Recombinant Pseudomonas aeruginosa Carrying Vitreoscilla Hemoglobin Gene. SAUJS. 2022;26(4):805-12.