Research Article
BibTex RIS Cite
Year 2022, , 1093 - 1103, 31.12.2022
https://doi.org/10.16984/saufenbilder.1126859

Abstract

References

  • [1] S. Wild, G. King, Roglic Anders, Green Richard, “Sicree Hilary, Estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27 pp. 1047–1053, 2004.
  • [2] F. J. Garcia-Garcia, P. Salazar, F. Yubero, A. R. González-Elipe, “Non-enzymatic Glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles.” Electrochimica Acta. Vol. 201 pp. 38-44, 2016.
  • [3] B. L. Allen, P. D. Kichambare, A. Star, “Carbon nanotube field-effect-transistor-based biosensors,” Advanced Materials vol. 19 pp. 1439–1451, 2007.
  • [4] K. Besteman, J. O. Lee, F. G. M. Wiertz, H .A. Heering, C. Dekker, “Enzyme-coated carbon nanotubes as single-molecule biosensors,” Nano Letters, vol. 3 pp. 727–730, 2003.
  • [5] A. Esmaeeli, A. Ghaffarinejad, A. Zahedi, O. Vahidi, “Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor,” Sensors and Actuators B: Chemical vol. 266 pp. 294–301, 2018.
  • [6] Y. H. Lin, F. Lu, Y. Tu, Z.F. Ren, “Glucose biosensors based on carbon nanotube nanoelectrode ensembles,” Nano Letters vol. 4 pp. 191–195, 2004.
  • [7] L. N. Jia, X.B. Wei, L. L. Lv, X. X. Zhang, X. X. Duan, Y. Xu, K. L. Liu, J. Wang, “Electrodeposition of hydroxyapatite on nickel foam and further modification with conductive polyaniline for non-enzymatic glucose sensing”, Electrochimica Acta 280 315–322, 2018.
  • [8] L. Wang, X. Lu, C. Wen, Y. Xie, L. Miao, S. Chen, H. Li, P. Li, Y. Song, “One-step synthesis of Pt–NiO nanoplate array/reduced graphene oxide nanocomposites for non-enzymatic glucose sensing,” Journal of Materials Chemistry A vol. 3 pp. 608–616, 2015.
  • [9] M. Bogun M, S .E Inzucchi, “Inpatient management of diabetes and hyperglycemia,” Clinical Therapeutics vol. 35 pp. 724–33, 2013.
  • [10] A. Gaoa, X. Zhang, X. Penga, H. Wua, L. Bai, W. Jina, G. Wua, R. Hanga, P. K. Chua, “In situ synthesis of Ni(OH)2/TiO2 composite film on NiTi alloy for non-enzymatic glucose sensing,” Sensors and Actuators B vol. 232 pp. 150-157, 2016.
  • [11] R. Wang, X. Liang, H. Liu, L. Cui, X. Zhang, C. Liu, “Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles,” Microchimica Acta vol. 185 p.339, 2018.
  • [12] K. K. Lee, P. Y. Loh, C. H. Sow, W. S. Chin, “CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor,” Electrochemistry Communications, vol. 20 pp. 128-132, 2012.
  • [13] S. SoYoon, A. Ramadoss, B. Saravanakumar, S. J. Kim, “Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application,” Journal of Electroanalytical Chemistry vol. 717-718 pp. 90-95, 2014.
  • [14] G. He, L. Tian, Y. Cai, S. Wu, Y. Su, H. Yan, W. Pu, J. Zhang, L. Li, “Sensitive Non-enzymatic Electrochemical Glucose Detection Based on Hollow Porous NiO,” Nanoscale Research Letters vol. 13 p. 3 2018.
  • [15] N. Taşaltın, E. Aydın, S. Karakuş, A. Kilislioğlu,“K carrageenan/PVA/nano eggshell biocomposite based non enzymatic electrochemical biosensor for low level urea detection,” Applied Physics A vol. 126:827, 2020.
  • [16] X. Bo, J. Bai, L. Yang, L. Guo, “The nanocomposite of PtPd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose,” Sensor and Actuators B: Chemical vol. 157 pp. 662–668, 2011.
  • [17] Y. Sun, H. Yang, X. Yu, H. Meng, X. Xu, “A novel non-enzymatic amperometric glucose sensor based on hollow Pt-Ni alloy nanotubes array electrode with enhanced sensitivity,” RSC Advances vol. 5 pp. 70387–70394, 2015.
  • [18] Y. Sun, H. Buck, T.E. Mallouk, “Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors,” Analitical Chemistry vol. 73 pp. 1599–1604, 2001.
  • [19] S. Park, T. D. Chung, H. C. Kim, “Nonenzymatic glucose detection using mesoporous platinum,” Analitical Chemistry vol. 75 pp. 3046–3049, 2003.
  • [20] M. Jafarian, F. Forouzandeh, I. Danaee, F. Gobal, M. G. Mahjani, “Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode,” Journal of Solid State Electrochemistry vol.13 pp. 1171–1179, 2009.
  • [21] P. F. Luo, T. Kuwana, “Nickel-titanium alloy electrode as a sensitive and stable LCEC detector for carbohydrates,” Analitical Chemistry vol. 66 pp. 2775–2782, 1994.
  • [22] Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, Y. Lei, “Electrospun Co3O4 nanofibers for sensitive and selective glucose detection,” Biosensors and Bioelectronics Vol. 26 pp. 542–548, 2010.
  • [23] J. Yang, M. Cho, Y. Lee, “Synthesis of hierarchical Ni(OH)2 hollow nanorod via chemical bath deposition and its glucose sensing performance,” Sensor and Actuators B: Chemical vol. 222 pp. 674–681, 2016.
  • [24] M. M. Rahman, A. J. S. Ahammad, J. H. Jin, S. J. Ahn, J. J. Lee, “A comprehensive review of glucose biosensors based on nanostructured metal-oxides,” Sensors vol.10 pp. 4855–4886, 2010.
  • [25] Y. Ren, W. K. Chim, S. Y. Chiam, J.Q. Huang, C. Pi, J. S. Pan, “Formation of nickel oxide nanotubes with uniform wall thickness by low-temperature thermal oxidation through understanding the limiting effect of vacancy diffusion and the Kirkendall phenomenon,” Advanced Functional Materials vol. 20 pp. 3336–3342, 2010.
  • [26] L. C. Jiang, W. De Zhang, “A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode,” Biosens and Bioelectronics vol. 25 pp. 1402–1407, 2010.
  • [27] D.-W. Hwang, S. Lee, M. Seo, T. D. Chung, “Recent advances in electrochemical non-enzymatic glucose sensors- A review,” Analitica Chimica Acta vol. 1033 pp. 1–34, 2018.
  • [28] S. K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H. S. Nalwa, A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors,” RSC Advances vol. 9 pp. 8778–8881, 2019.
  • [29] M. Mathew, S. Radhakrishnan, A. Vaidyanathan, B. Chakraborty, C. S. Rout, “Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments,” Analitical and Bioanalitical Chemistry vol. 413 pp. 727–762, 2021.
  • [30] A. Yavuz, S. Aktaş, S. Duru, “Polypyrrole Modified Graphite Electrode for Supercapacitor Application: The Effect of Cycling Electrolytes,” Sakarya University Journal of Science vol. 3 pp. 462-471, 2019.
  • [31] C. Tasaltın, T. A. Türkmen, N. Tasaltın, S. Karakus, “Highly sensitive non-enzymatic electrochemical glucose biosensor based on PANI: B12 Borophene,” Journal of Materials Science: Materials in Electronics vol. 32 pp. 10750–10760, 2021.
  • [32] S. Aytac, F. Kuralaya, I. H. Boyacı, C. Unaleroglu, “A novel polypyrrole–phenylboronic acid based electrochemical saccharide sensor,” Sensors and Actuators B vol. 160 pp. 405– 411, 2011.
  • [33] R. Ojani, J. B. Raoof, S. Fathi, “Electrocatalytic oxidation of some carbohydrates by nickel/poly(o-aminophenol) modified carbon paste electrode,” Electroanalysis. Vol. 20 pp. 1825-1830, 2008.
  • [34] J. Yang, M. Cho, C. Pang, Y. Lee, “Highly sensitive non-enzymatic glucose sensor based on over-oxidized polypyrrole nanowires modified with Ni(OH)2 nanoflakes,” Sensors and Actuators B vol. 211 pp. 93-101, 2015.
  • [35] X. Duan, K. Liu, Y. Xu, M. Yuan, T. Gao, J. Wang, “Nonenzymatic electrochemical glucose biosensor constructed by NiCo2O4@Ppy nanowires on nickel foam substrate,” Sensors and Actuators B: Chemical vol. 292 pp. 121-128, 2019.
  • [36] Z. Shahnavaz, F. Lorestani, W. P. Meng, Y. Alias, “Core-shell–CuFe2O4/PPy nanocomposite enzyme-free sensor for detection of glucose,” Journal of Solid State Electrochemistry vol. 19 pp. 1223–1233, 2015.
  • [37] L. Ozcan, Y. Sahin, H. Türk, “Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt (II) phthalocyanine tetrasulfonate,” Biosensors and Bioelectronics vol. 24 pp. 512–517, 2008.
  • [38] C. Li, Y. Su, X. Lv, H. Xia, H. Shi, X. Yang, J. Zhang, Y. Wang, “Controllable anchoring of gold nanoparticles to polypyrrole nanofibers by hydrogen bonding and their application in nonenzymatic glucose sensors,” Biosensors and Bioelectronics vol. 38 pp. 402–406, 2012.
  • [39] Z. Zhang, Y. Yang, G. Gao, B. I. Yakobson, “Two‐dimensional boron monolayers mediated by metal substrates,” Angewandte Chemie International Edition, vol. 127 pp. 13214- 13218, 2015.
  • [40] Z. Zhang, S. N. Shirodkar, Y. Yang, B. I. Yakobson, “Gate‐voltage control of borophene structure formation,” Angewandte Chemie International Edition, vol. 129 pp. 15623- 15628, 2017.
  • [41] L Liu, Z. Zhang, X. Liu, X. Xuan, B. I. Yakobson, M. C. Hersam, W. Guo, “Borophene concentric superlattices via self-assembly of twin boundaries,” Nano Letters, vol. 20(2), pp. 1315- 1321, 2020.
  • [42] Z. Zhang, A. J. Mannix, X. Liu, Z. Hu, N. P. Guisinger, M. C. Hersam, B. I. Yakobson, “Near-equilibrium growth from borophene edges on silver,” Science Advances, vol. 5 eaax0246, 2019.
  • [43] Z. Zhang, Y. Yang, E. S. Penev, B. I. Yakobson, “Elasticity, flexibility, and ideal strength of borophenes,” Advanced Functional Materials vol. 27(9) p. 605059, 2017.
  • [44] Z. Zhuhua, E. S. Penev, B. I. Yakobson, “Two-dimensional boron: structures, properties and applications,” Chemical Society Reviews vol. 46(22) pp. 6746- 6763, 2017.
  • [45] T. A. Türkmen, N. Taşaltın, C. Taşaltın, G. Baytemir, S. Karakuş, “PEDOT: PSS/β12 borophene nanocomposites as an inorganic-organic hybrid electrode for high performance supercapacitors,” Inorganic Chemistry Communications vol. 139, 109329 2022.
  • [46] S. Güngör, C. Taşaltın, İ. Gürol, G. Baytemir, S. Karakus, N. Tasaltin, “Copper phthalocyanine-borophene nanocomposite-based non-enzymatic electrochemical urea biosensor,” Applied Physics A vol. 128 p.89 2022.
  • [47] G. Baytemir, İ. Gürol, S. Karakuş, C. Taşaltın, N. Taşaltın, “Nickel phthalocyanine-borophene nanocompositebased electrodes for non-enzymatic electrochemical detection of glucose,” Journal of Materials Science: Materials in Electronics vol. 33 pp. 16586- 16596 2022.
  • [48] M. Ou, X. Wang, L. Yu, C. Liu, W. Tao, X. Ji, L. Mei, "The Emergence and Evolution of Borophene," Advanced Science vol. 8 pp. 1-29, 2021.
  • [49] C. Tasaltin, “Glucose sensing performance of PAN: β-rhombohedral borophene based non-enzymatic electrochemical biosensor,” Inorganic Chemistry Communications vol. 133, 108973, 2021.
  • [50] Y. Wang, X. Pan, Y. Chen, Q. Wen, C. Lin, J. Zheng, W. Li, H. Xu, L. Qi “A 3D porous nitrogen-doped carbon nanotube sponge anode modified with polypyrrole and carboxymethyl cellulose for high-performance microbial fuel cells,” Journal of Applied Electrochemistry vol. 50 pp. 1281–1290, 2020.
  • [51] M. Guzinski, E. Lindner, B. Prendley, E. Chaum, “Electrochemical sensor for tricyclic antidepressants with low nanomolar detection limit: Quantitative Determination of Amitriptyline and Nortriptyline in blood,” Talanta, vol. 239, p. 123086, 2022.

Highly Selective and Sensitive Non-enzymatic Glucose Biosensor Based on Polypyrrole-Borophene Nanocomposite

Year 2022, , 1093 - 1103, 31.12.2022
https://doi.org/10.16984/saufenbilder.1126859

Abstract

In this study, a non-enzymatic glucose sensor composed of two-dimensional (2D) borophene-decorated polypyrrole (PPy) nanocomposites (NCs) was developed. The PPy-borophene NCs were prepared using a low-cost sonication method. The sensing performance of the PPy-borophene NCs was investigated by the cyclic voltammetry (CV) technique against various biomolecules such as glucose, maltose, lactose, fructose, and urea. According to the electrochemical results, it was observed that in the glucose concentration range of 1.5 to 24 mM within a voltammetric cycle of 1 min, the PPy-based sensor and PPy-borophene NCs-based sensor exhibited sensitivities of 11.88 μAmM−1 cm−2 and 213.42 μAmM−1 cm−2, respectively. The detection limits of the PPy-based and PPy-borophene NCs-based sensors were determined to be 0.5 µM and 0.04 µM, respectively. Furthermore, selectivity measurement results revealed that the proposed non-enzymatic biosensor has remarkably good sensitivity and high selectivity, indicating that common biomolecules (glucose, maltose, lactose, fructose, and urea) could be captured by the sensor. Consequently, it was proven that the proposed biosensor could be a potential device for diabetes diagnosis.

References

  • [1] S. Wild, G. King, Roglic Anders, Green Richard, “Sicree Hilary, Estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27 pp. 1047–1053, 2004.
  • [2] F. J. Garcia-Garcia, P. Salazar, F. Yubero, A. R. González-Elipe, “Non-enzymatic Glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles.” Electrochimica Acta. Vol. 201 pp. 38-44, 2016.
  • [3] B. L. Allen, P. D. Kichambare, A. Star, “Carbon nanotube field-effect-transistor-based biosensors,” Advanced Materials vol. 19 pp. 1439–1451, 2007.
  • [4] K. Besteman, J. O. Lee, F. G. M. Wiertz, H .A. Heering, C. Dekker, “Enzyme-coated carbon nanotubes as single-molecule biosensors,” Nano Letters, vol. 3 pp. 727–730, 2003.
  • [5] A. Esmaeeli, A. Ghaffarinejad, A. Zahedi, O. Vahidi, “Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor,” Sensors and Actuators B: Chemical vol. 266 pp. 294–301, 2018.
  • [6] Y. H. Lin, F. Lu, Y. Tu, Z.F. Ren, “Glucose biosensors based on carbon nanotube nanoelectrode ensembles,” Nano Letters vol. 4 pp. 191–195, 2004.
  • [7] L. N. Jia, X.B. Wei, L. L. Lv, X. X. Zhang, X. X. Duan, Y. Xu, K. L. Liu, J. Wang, “Electrodeposition of hydroxyapatite on nickel foam and further modification with conductive polyaniline for non-enzymatic glucose sensing”, Electrochimica Acta 280 315–322, 2018.
  • [8] L. Wang, X. Lu, C. Wen, Y. Xie, L. Miao, S. Chen, H. Li, P. Li, Y. Song, “One-step synthesis of Pt–NiO nanoplate array/reduced graphene oxide nanocomposites for non-enzymatic glucose sensing,” Journal of Materials Chemistry A vol. 3 pp. 608–616, 2015.
  • [9] M. Bogun M, S .E Inzucchi, “Inpatient management of diabetes and hyperglycemia,” Clinical Therapeutics vol. 35 pp. 724–33, 2013.
  • [10] A. Gaoa, X. Zhang, X. Penga, H. Wua, L. Bai, W. Jina, G. Wua, R. Hanga, P. K. Chua, “In situ synthesis of Ni(OH)2/TiO2 composite film on NiTi alloy for non-enzymatic glucose sensing,” Sensors and Actuators B vol. 232 pp. 150-157, 2016.
  • [11] R. Wang, X. Liang, H. Liu, L. Cui, X. Zhang, C. Liu, “Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles,” Microchimica Acta vol. 185 p.339, 2018.
  • [12] K. K. Lee, P. Y. Loh, C. H. Sow, W. S. Chin, “CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor,” Electrochemistry Communications, vol. 20 pp. 128-132, 2012.
  • [13] S. SoYoon, A. Ramadoss, B. Saravanakumar, S. J. Kim, “Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application,” Journal of Electroanalytical Chemistry vol. 717-718 pp. 90-95, 2014.
  • [14] G. He, L. Tian, Y. Cai, S. Wu, Y. Su, H. Yan, W. Pu, J. Zhang, L. Li, “Sensitive Non-enzymatic Electrochemical Glucose Detection Based on Hollow Porous NiO,” Nanoscale Research Letters vol. 13 p. 3 2018.
  • [15] N. Taşaltın, E. Aydın, S. Karakuş, A. Kilislioğlu,“K carrageenan/PVA/nano eggshell biocomposite based non enzymatic electrochemical biosensor for low level urea detection,” Applied Physics A vol. 126:827, 2020.
  • [16] X. Bo, J. Bai, L. Yang, L. Guo, “The nanocomposite of PtPd nanoparticles/onion-like mesoporous carbon vesicle for nonenzymatic amperometric sensing of glucose,” Sensor and Actuators B: Chemical vol. 157 pp. 662–668, 2011.
  • [17] Y. Sun, H. Yang, X. Yu, H. Meng, X. Xu, “A novel non-enzymatic amperometric glucose sensor based on hollow Pt-Ni alloy nanotubes array electrode with enhanced sensitivity,” RSC Advances vol. 5 pp. 70387–70394, 2015.
  • [18] Y. Sun, H. Buck, T.E. Mallouk, “Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors,” Analitical Chemistry vol. 73 pp. 1599–1604, 2001.
  • [19] S. Park, T. D. Chung, H. C. Kim, “Nonenzymatic glucose detection using mesoporous platinum,” Analitical Chemistry vol. 75 pp. 3046–3049, 2003.
  • [20] M. Jafarian, F. Forouzandeh, I. Danaee, F. Gobal, M. G. Mahjani, “Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode,” Journal of Solid State Electrochemistry vol.13 pp. 1171–1179, 2009.
  • [21] P. F. Luo, T. Kuwana, “Nickel-titanium alloy electrode as a sensitive and stable LCEC detector for carbohydrates,” Analitical Chemistry vol. 66 pp. 2775–2782, 1994.
  • [22] Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, Y. Lei, “Electrospun Co3O4 nanofibers for sensitive and selective glucose detection,” Biosensors and Bioelectronics Vol. 26 pp. 542–548, 2010.
  • [23] J. Yang, M. Cho, Y. Lee, “Synthesis of hierarchical Ni(OH)2 hollow nanorod via chemical bath deposition and its glucose sensing performance,” Sensor and Actuators B: Chemical vol. 222 pp. 674–681, 2016.
  • [24] M. M. Rahman, A. J. S. Ahammad, J. H. Jin, S. J. Ahn, J. J. Lee, “A comprehensive review of glucose biosensors based on nanostructured metal-oxides,” Sensors vol.10 pp. 4855–4886, 2010.
  • [25] Y. Ren, W. K. Chim, S. Y. Chiam, J.Q. Huang, C. Pi, J. S. Pan, “Formation of nickel oxide nanotubes with uniform wall thickness by low-temperature thermal oxidation through understanding the limiting effect of vacancy diffusion and the Kirkendall phenomenon,” Advanced Functional Materials vol. 20 pp. 3336–3342, 2010.
  • [26] L. C. Jiang, W. De Zhang, “A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode,” Biosens and Bioelectronics vol. 25 pp. 1402–1407, 2010.
  • [27] D.-W. Hwang, S. Lee, M. Seo, T. D. Chung, “Recent advances in electrochemical non-enzymatic glucose sensors- A review,” Analitica Chimica Acta vol. 1033 pp. 1–34, 2018.
  • [28] S. K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H. S. Nalwa, A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors,” RSC Advances vol. 9 pp. 8778–8881, 2019.
  • [29] M. Mathew, S. Radhakrishnan, A. Vaidyanathan, B. Chakraborty, C. S. Rout, “Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments,” Analitical and Bioanalitical Chemistry vol. 413 pp. 727–762, 2021.
  • [30] A. Yavuz, S. Aktaş, S. Duru, “Polypyrrole Modified Graphite Electrode for Supercapacitor Application: The Effect of Cycling Electrolytes,” Sakarya University Journal of Science vol. 3 pp. 462-471, 2019.
  • [31] C. Tasaltın, T. A. Türkmen, N. Tasaltın, S. Karakus, “Highly sensitive non-enzymatic electrochemical glucose biosensor based on PANI: B12 Borophene,” Journal of Materials Science: Materials in Electronics vol. 32 pp. 10750–10760, 2021.
  • [32] S. Aytac, F. Kuralaya, I. H. Boyacı, C. Unaleroglu, “A novel polypyrrole–phenylboronic acid based electrochemical saccharide sensor,” Sensors and Actuators B vol. 160 pp. 405– 411, 2011.
  • [33] R. Ojani, J. B. Raoof, S. Fathi, “Electrocatalytic oxidation of some carbohydrates by nickel/poly(o-aminophenol) modified carbon paste electrode,” Electroanalysis. Vol. 20 pp. 1825-1830, 2008.
  • [34] J. Yang, M. Cho, C. Pang, Y. Lee, “Highly sensitive non-enzymatic glucose sensor based on over-oxidized polypyrrole nanowires modified with Ni(OH)2 nanoflakes,” Sensors and Actuators B vol. 211 pp. 93-101, 2015.
  • [35] X. Duan, K. Liu, Y. Xu, M. Yuan, T. Gao, J. Wang, “Nonenzymatic electrochemical glucose biosensor constructed by NiCo2O4@Ppy nanowires on nickel foam substrate,” Sensors and Actuators B: Chemical vol. 292 pp. 121-128, 2019.
  • [36] Z. Shahnavaz, F. Lorestani, W. P. Meng, Y. Alias, “Core-shell–CuFe2O4/PPy nanocomposite enzyme-free sensor for detection of glucose,” Journal of Solid State Electrochemistry vol. 19 pp. 1223–1233, 2015.
  • [37] L. Ozcan, Y. Sahin, H. Türk, “Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt (II) phthalocyanine tetrasulfonate,” Biosensors and Bioelectronics vol. 24 pp. 512–517, 2008.
  • [38] C. Li, Y. Su, X. Lv, H. Xia, H. Shi, X. Yang, J. Zhang, Y. Wang, “Controllable anchoring of gold nanoparticles to polypyrrole nanofibers by hydrogen bonding and their application in nonenzymatic glucose sensors,” Biosensors and Bioelectronics vol. 38 pp. 402–406, 2012.
  • [39] Z. Zhang, Y. Yang, G. Gao, B. I. Yakobson, “Two‐dimensional boron monolayers mediated by metal substrates,” Angewandte Chemie International Edition, vol. 127 pp. 13214- 13218, 2015.
  • [40] Z. Zhang, S. N. Shirodkar, Y. Yang, B. I. Yakobson, “Gate‐voltage control of borophene structure formation,” Angewandte Chemie International Edition, vol. 129 pp. 15623- 15628, 2017.
  • [41] L Liu, Z. Zhang, X. Liu, X. Xuan, B. I. Yakobson, M. C. Hersam, W. Guo, “Borophene concentric superlattices via self-assembly of twin boundaries,” Nano Letters, vol. 20(2), pp. 1315- 1321, 2020.
  • [42] Z. Zhang, A. J. Mannix, X. Liu, Z. Hu, N. P. Guisinger, M. C. Hersam, B. I. Yakobson, “Near-equilibrium growth from borophene edges on silver,” Science Advances, vol. 5 eaax0246, 2019.
  • [43] Z. Zhang, Y. Yang, E. S. Penev, B. I. Yakobson, “Elasticity, flexibility, and ideal strength of borophenes,” Advanced Functional Materials vol. 27(9) p. 605059, 2017.
  • [44] Z. Zhuhua, E. S. Penev, B. I. Yakobson, “Two-dimensional boron: structures, properties and applications,” Chemical Society Reviews vol. 46(22) pp. 6746- 6763, 2017.
  • [45] T. A. Türkmen, N. Taşaltın, C. Taşaltın, G. Baytemir, S. Karakuş, “PEDOT: PSS/β12 borophene nanocomposites as an inorganic-organic hybrid electrode for high performance supercapacitors,” Inorganic Chemistry Communications vol. 139, 109329 2022.
  • [46] S. Güngör, C. Taşaltın, İ. Gürol, G. Baytemir, S. Karakus, N. Tasaltin, “Copper phthalocyanine-borophene nanocomposite-based non-enzymatic electrochemical urea biosensor,” Applied Physics A vol. 128 p.89 2022.
  • [47] G. Baytemir, İ. Gürol, S. Karakuş, C. Taşaltın, N. Taşaltın, “Nickel phthalocyanine-borophene nanocompositebased electrodes for non-enzymatic electrochemical detection of glucose,” Journal of Materials Science: Materials in Electronics vol. 33 pp. 16586- 16596 2022.
  • [48] M. Ou, X. Wang, L. Yu, C. Liu, W. Tao, X. Ji, L. Mei, "The Emergence and Evolution of Borophene," Advanced Science vol. 8 pp. 1-29, 2021.
  • [49] C. Tasaltin, “Glucose sensing performance of PAN: β-rhombohedral borophene based non-enzymatic electrochemical biosensor,” Inorganic Chemistry Communications vol. 133, 108973, 2021.
  • [50] Y. Wang, X. Pan, Y. Chen, Q. Wen, C. Lin, J. Zheng, W. Li, H. Xu, L. Qi “A 3D porous nitrogen-doped carbon nanotube sponge anode modified with polypyrrole and carboxymethyl cellulose for high-performance microbial fuel cells,” Journal of Applied Electrochemistry vol. 50 pp. 1281–1290, 2020.
  • [51] M. Guzinski, E. Lindner, B. Prendley, E. Chaum, “Electrochemical sensor for tricyclic antidepressants with low nanomolar detection limit: Quantitative Determination of Amitriptyline and Nortriptyline in blood,” Talanta, vol. 239, p. 123086, 2022.
There are 51 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Gülsen Baytemir 0000-0002-1143-0730

Publication Date December 31, 2022
Submission Date June 6, 2022
Acceptance Date September 18, 2022
Published in Issue Year 2022

Cite

APA Baytemir, G. (2022). Highly Selective and Sensitive Non-enzymatic Glucose Biosensor Based on Polypyrrole-Borophene Nanocomposite. Sakarya University Journal of Science, 26(6), 1093-1103. https://doi.org/10.16984/saufenbilder.1126859
AMA Baytemir G. Highly Selective and Sensitive Non-enzymatic Glucose Biosensor Based on Polypyrrole-Borophene Nanocomposite. SAUJS. December 2022;26(6):1093-1103. doi:10.16984/saufenbilder.1126859
Chicago Baytemir, Gülsen. “Highly Selective and Sensitive Non-Enzymatic Glucose Biosensor Based on Polypyrrole-Borophene Nanocomposite”. Sakarya University Journal of Science 26, no. 6 (December 2022): 1093-1103. https://doi.org/10.16984/saufenbilder.1126859.
EndNote Baytemir G (December 1, 2022) Highly Selective and Sensitive Non-enzymatic Glucose Biosensor Based on Polypyrrole-Borophene Nanocomposite. Sakarya University Journal of Science 26 6 1093–1103.
IEEE G. Baytemir, “Highly Selective and Sensitive Non-enzymatic Glucose Biosensor Based on Polypyrrole-Borophene Nanocomposite”, SAUJS, vol. 26, no. 6, pp. 1093–1103, 2022, doi: 10.16984/saufenbilder.1126859.
ISNAD Baytemir, Gülsen. “Highly Selective and Sensitive Non-Enzymatic Glucose Biosensor Based on Polypyrrole-Borophene Nanocomposite”. Sakarya University Journal of Science 26/6 (December 2022), 1093-1103. https://doi.org/10.16984/saufenbilder.1126859.
JAMA Baytemir G. Highly Selective and Sensitive Non-enzymatic Glucose Biosensor Based on Polypyrrole-Borophene Nanocomposite. SAUJS. 2022;26:1093–1103.
MLA Baytemir, Gülsen. “Highly Selective and Sensitive Non-Enzymatic Glucose Biosensor Based on Polypyrrole-Borophene Nanocomposite”. Sakarya University Journal of Science, vol. 26, no. 6, 2022, pp. 1093-0, doi:10.16984/saufenbilder.1126859.
Vancouver Baytemir G. Highly Selective and Sensitive Non-enzymatic Glucose Biosensor Based on Polypyrrole-Borophene Nanocomposite. SAUJS. 2022;26(6):1093-10.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.