Research Article
BibTex RIS Cite
Year 2023, , 235 - 246, 30.04.2023
https://doi.org/10.16984/saufenbilder.1173173

Abstract

References

  • A. F. Horadam, “A Generalized Fibonacci Sequence,” The American Mathematical Monthly, vol. 68, no. 5, pp. 455-459, 1961.
  • S. Falcon, A. Plaza, “On the Fibonacci k-Numbers,” Chaos, Solitons & Fractals, vol. 32, no. 5, pp. 1615-24, 2007.
  • M. El-Mikkawy, T. Sogabe, “A New Family of k-Fibonacci Numbers,” Applied Mathematics and Computation, vol. 215, no. 12, pp. 4456–4461, 2010.
  • V. K. Gupta, Y. K. Panwar, O. Sikhwal, “Generalized Fibonacci Sequences,” Theoretical Mathematics & Applications, vol. 2, no. 2, pp. 115-124, 2012.
  • Y. Taşyurdu, N. Çobanoğlu, Z. Dilmen, “On the a New Family of k-Fibonacci Numbers,” Erzincan University Journal of Science and Technology, vol. 9, no. 1, pp. 95-101, 2016.
  • O. Deveci, Y. Aküzüm, “The Recurrence Sequences via Hurwitz Matrices,” Annals of the Alexandru Ioan Cuza University-Mathematics, vol. 63, no. 3, pp. 1-13, 2017.
  • Y. K. Panwar, “A Note on the Generalized k-Fibonacci Sequence,” MTU Journal of Engineering and Natural Sciences, vol. 2, no. 2, pp. 29-39, 2021.
  • A. P. Stakhov, “Introduction into Algorithmic Measurement Theory,” Soviet Radio, Moskow, Russia, 1977.
  • A. P. Stakhov, “Fibonacci Matrices, a Generalization of the Cassini Formula, and a New Coding Theory,” Chaos, Solitons & Fractals, vol. 30, no. 1, pp. 56-66, 2006.
  • E. Kiliç, “The Binet formula, Sums and Representations of Generalized Fibonacci p-numbers,” European Journal of Combinatorics, vol. 29, no. 3, pp. 701–711, 2008.
  • K. Kuhapatanakul, “The Fibonacci p-Numbers and Pascal’s Triangle,” Cogent Mathematics, vol. 3, no. 1, 7p, 2016.
  • M. Kwasnik, I. Włoch, “The Total Number of Generalized Sable Sets and Kernels of Graphs,” Ars Combinatoria, vol. 55, pp. 139-146, 2000.
  • U. Bednarz, A. Włoch, M. Wołowiec-Musiał, “Distance Fibonacci Numbers, Their Interpretations and Matrix Generators,” Commentationes Mathematicae, vol. 53, no. 1. pp. 35-46, 2013.
  • I. Włoch, U. Bednarz, D. Brod, A. Włoch, M. Wołowiec-Musiał, “On a New Type of Distance Fibonacci Numbers,” Discrete Applied Mathematics, vol. 161, no. 16-17, pp. 2695-2701, 2013.
  • R. C. Brigham, R. M. Caron, P. Z. Chinn, R. P. Grimaldi, “A Tiling Scheme for the Fibonacci Numbers,” Journal Recreational Mathematics, vol. 28, no. 1, pp. 10–17, 1996-97.
  • A. T. Benjamin, J. J. Quinn, “Proofs that Really Count: The Art of Combinatorial Proof,” Mathematical Association of America, Washington D. C., 2003, 194p.
  • Y. Taşyurdu, N. Ş. Türkoğlu, “A Tiling Interpretation for (p,q)-Fibonacci and (p,q)-Lucas Numbers,” Journal of Universal Mathematics, vol. 5, no. 2, pp. 81-87, 2022.
  • Y. Taşyurdu, B. Cengiz, “A Tiling Approach to Fibonaccı p-Numbers,” Journal of Universal Mathematics, vol. 5, no. 2, pp.177-184, 2022.
  • A. F. Horadam, “Jacobsthal and Pell Curves,” The Fibonacci Quarterly, vol. 26, no. 1, pp. 79-83, 1988.
  • J. P. Allouche, T. Johnson, “Narayana’s Cows and Delayed Morphisms,” In: Articles of 3rd Computer Music Conference JIM96, France, 1996.
  • N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, The OEIS Foundation, 2006, www.research.att.com/∼njas/sequences/.
  • T. Koshy, “Fibonacci and Lucas Numbers with Applications,” vol. 1, 2nd Edition, Wiley-Interscience Publications, New York, 2017, 704p.

On Fibonacci (k,p)-Numbers and Their Interpretations

Year 2023, , 235 - 246, 30.04.2023
https://doi.org/10.16984/saufenbilder.1173173

Abstract

In this paper, we define new kinds of Fibonacci numbers, which generalize both Fibonacci, Jacobsthal, Narayana numbers and Fibonacci p-numbers in the distance sense, using the definition of a distance between numbers by a recurrence relation according to a new parameter k. Tiling and combinatorial interpretations of these numbers are presented, and explicit formulas that allow us to calculate the nth number are given. Also, their generating functions are obtained and sums formulas of these numbers with special subscripts are given by tiling interpretations that allow the derivation of their properties.

References

  • A. F. Horadam, “A Generalized Fibonacci Sequence,” The American Mathematical Monthly, vol. 68, no. 5, pp. 455-459, 1961.
  • S. Falcon, A. Plaza, “On the Fibonacci k-Numbers,” Chaos, Solitons & Fractals, vol. 32, no. 5, pp. 1615-24, 2007.
  • M. El-Mikkawy, T. Sogabe, “A New Family of k-Fibonacci Numbers,” Applied Mathematics and Computation, vol. 215, no. 12, pp. 4456–4461, 2010.
  • V. K. Gupta, Y. K. Panwar, O. Sikhwal, “Generalized Fibonacci Sequences,” Theoretical Mathematics & Applications, vol. 2, no. 2, pp. 115-124, 2012.
  • Y. Taşyurdu, N. Çobanoğlu, Z. Dilmen, “On the a New Family of k-Fibonacci Numbers,” Erzincan University Journal of Science and Technology, vol. 9, no. 1, pp. 95-101, 2016.
  • O. Deveci, Y. Aküzüm, “The Recurrence Sequences via Hurwitz Matrices,” Annals of the Alexandru Ioan Cuza University-Mathematics, vol. 63, no. 3, pp. 1-13, 2017.
  • Y. K. Panwar, “A Note on the Generalized k-Fibonacci Sequence,” MTU Journal of Engineering and Natural Sciences, vol. 2, no. 2, pp. 29-39, 2021.
  • A. P. Stakhov, “Introduction into Algorithmic Measurement Theory,” Soviet Radio, Moskow, Russia, 1977.
  • A. P. Stakhov, “Fibonacci Matrices, a Generalization of the Cassini Formula, and a New Coding Theory,” Chaos, Solitons & Fractals, vol. 30, no. 1, pp. 56-66, 2006.
  • E. Kiliç, “The Binet formula, Sums and Representations of Generalized Fibonacci p-numbers,” European Journal of Combinatorics, vol. 29, no. 3, pp. 701–711, 2008.
  • K. Kuhapatanakul, “The Fibonacci p-Numbers and Pascal’s Triangle,” Cogent Mathematics, vol. 3, no. 1, 7p, 2016.
  • M. Kwasnik, I. Włoch, “The Total Number of Generalized Sable Sets and Kernels of Graphs,” Ars Combinatoria, vol. 55, pp. 139-146, 2000.
  • U. Bednarz, A. Włoch, M. Wołowiec-Musiał, “Distance Fibonacci Numbers, Their Interpretations and Matrix Generators,” Commentationes Mathematicae, vol. 53, no. 1. pp. 35-46, 2013.
  • I. Włoch, U. Bednarz, D. Brod, A. Włoch, M. Wołowiec-Musiał, “On a New Type of Distance Fibonacci Numbers,” Discrete Applied Mathematics, vol. 161, no. 16-17, pp. 2695-2701, 2013.
  • R. C. Brigham, R. M. Caron, P. Z. Chinn, R. P. Grimaldi, “A Tiling Scheme for the Fibonacci Numbers,” Journal Recreational Mathematics, vol. 28, no. 1, pp. 10–17, 1996-97.
  • A. T. Benjamin, J. J. Quinn, “Proofs that Really Count: The Art of Combinatorial Proof,” Mathematical Association of America, Washington D. C., 2003, 194p.
  • Y. Taşyurdu, N. Ş. Türkoğlu, “A Tiling Interpretation for (p,q)-Fibonacci and (p,q)-Lucas Numbers,” Journal of Universal Mathematics, vol. 5, no. 2, pp. 81-87, 2022.
  • Y. Taşyurdu, B. Cengiz, “A Tiling Approach to Fibonaccı p-Numbers,” Journal of Universal Mathematics, vol. 5, no. 2, pp.177-184, 2022.
  • A. F. Horadam, “Jacobsthal and Pell Curves,” The Fibonacci Quarterly, vol. 26, no. 1, pp. 79-83, 1988.
  • J. P. Allouche, T. Johnson, “Narayana’s Cows and Delayed Morphisms,” In: Articles of 3rd Computer Music Conference JIM96, France, 1996.
  • N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, The OEIS Foundation, 2006, www.research.att.com/∼njas/sequences/.
  • T. Koshy, “Fibonacci and Lucas Numbers with Applications,” vol. 1, 2nd Edition, Wiley-Interscience Publications, New York, 2017, 704p.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Yasemin Taşyurdu 0000-0002-9011-8269

Berke Cengiz 0000-0001-8372-3332

Publication Date April 30, 2023
Submission Date September 9, 2022
Acceptance Date December 14, 2022
Published in Issue Year 2023

Cite

APA Taşyurdu, Y., & Cengiz, B. (2023). On Fibonacci (k,p)-Numbers and Their Interpretations. Sakarya University Journal of Science, 27(2), 235-246. https://doi.org/10.16984/saufenbilder.1173173
AMA Taşyurdu Y, Cengiz B. On Fibonacci (k,p)-Numbers and Their Interpretations. SAUJS. April 2023;27(2):235-246. doi:10.16984/saufenbilder.1173173
Chicago Taşyurdu, Yasemin, and Berke Cengiz. “On Fibonacci (k,p)-Numbers and Their Interpretations”. Sakarya University Journal of Science 27, no. 2 (April 2023): 235-46. https://doi.org/10.16984/saufenbilder.1173173.
EndNote Taşyurdu Y, Cengiz B (April 1, 2023) On Fibonacci (k,p)-Numbers and Their Interpretations. Sakarya University Journal of Science 27 2 235–246.
IEEE Y. Taşyurdu and B. Cengiz, “On Fibonacci (k,p)-Numbers and Their Interpretations”, SAUJS, vol. 27, no. 2, pp. 235–246, 2023, doi: 10.16984/saufenbilder.1173173.
ISNAD Taşyurdu, Yasemin - Cengiz, Berke. “On Fibonacci (k,p)-Numbers and Their Interpretations”. Sakarya University Journal of Science 27/2 (April 2023), 235-246. https://doi.org/10.16984/saufenbilder.1173173.
JAMA Taşyurdu Y, Cengiz B. On Fibonacci (k,p)-Numbers and Their Interpretations. SAUJS. 2023;27:235–246.
MLA Taşyurdu, Yasemin and Berke Cengiz. “On Fibonacci (k,p)-Numbers and Their Interpretations”. Sakarya University Journal of Science, vol. 27, no. 2, 2023, pp. 235-46, doi:10.16984/saufenbilder.1173173.
Vancouver Taşyurdu Y, Cengiz B. On Fibonacci (k,p)-Numbers and Their Interpretations. SAUJS. 2023;27(2):235-46.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.