Research Article
BibTex RIS Cite
Year 2023, , 452 - 463, 30.04.2023
https://doi.org/10.16984/saufenbilder.1181968

Abstract

Supporting Institution

Necmettin Erbakan Üniversitesi Bilimsel Araştırma Projeleri

Project Number

161710003

References

  • [1] A. M. Mishra, C. Q. Ma, P. Bauerle, "Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications," Chemical Reviews, vol. 109, no. 3, pp. 1141-1276, 2009.
  • [2] N. Agarwal, P. K. Nayak, F. Ali, M. P. Patankar, K. Narasimhan, N. Periasamy, "Tuning of HOMO levels of carbazole derivatives: New molecules for blue OLED," Synthetic Metals, vol. 161, no. 5-6, pp. 466-473, 2011.
  • [3] W.-Y. Hung, L.-C. Chi, W.-J. Chen, Y.-M. Chen, S.-H. Chou, K.-T. Wong, "A new benzimidazole/carbazole hybrid bipolar material for highly efficient deep-blue electrofluorescence,yellow–green electrophosphorescence, and two-color-based white OLEDs," Journal of Materials Chemistry, vol. 20, no. 45, pp. 10113-10119, 2010.
  • [4] M.-C. Cui, Z.-J. Li, R.-K. Tang, B.-L. Liu, "Synthesis and evaluation of novel benzothiazole derivatives based on the bithiophene structure as potential radiotracers for β-amyloid plaques in Alzheimer’s disease," Bioorganic & Medicinal Chemistry Letters, vol. 18, no. 7, pp. 2777-2784, 2010.
  • [5] Y. Lin, Y. Li, X. Zhan, "Small molecule semiconductors for high-efficiency organic photovoltaics," Chemical Society Reviews, vol. 41, no. 11, pp. 4245-4272, 2012.
  • [6] Y. Yang, X.-H. Duan, J.-Y. Deng, B. Jin, H.-M. Jia, B.-L. Liu, "Novel imaging agents for β-amyloid plaque based on the N-benzoylindole core," Bioorganic & Medicinal Chemistry Letters, vol. 21, no. 18, pp. 5594-5597, 2011.
  • [7] A. Almenningen, O. Bastiansen, P. Svendsas, "Electron Diffraction Studies of 2, 2’-Dithienyl Vapour," Acta Chemica Scandinavica, vol. 12, no. 8, 1958.
  • [8] G. Visser, G. Heeres, J. Wolters, A. Vos, "Disorder in crystals of the dithienyls and β-thiophenicacid," Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol. 24, no. 4, pp. 467-473, 1968.
  • [9] P. Bucci, M. Longeri, C. A. Veracini, L. Lunazzi, "Nematic phase nuclear magnetic resonance investigations of rotational isomerism. III. Conformational preferences and interconversion barrier of 2, 2'-bithienyl," Journal of the American Chemical Society, vol. 96, no. 5, pp. 1305-1309, 1974.
  • [10] D. Smith, Z. Yu, A. Saxena, R. Martin, A. Bishop, "Molecular Geometry Fluctuation Model for the Mobility of Conjugated Polymers," Physical Review Letters vol. 24, no. 84-4 pp. 721-4, 2000.
  • [11] C. Alemán, L. Julià, "Characterization of the Quinoid Structure for the 2,2‘-Bithiophene and 2,2‘,5‘,2 ‘‘-Terthiophene Dications," The Journal of Physical Chemistry, vol. 100, no. 35, pp. 14661-14664, 1996.
  • [12] V. Hernandez, J. Lopez Navarrete, "Ab initio study of torsional potentials in 2, 2’‐bithiophene and 3,4’‐and 3,3’‐dimethyl‐2, 2’‐bithiophene as models of the backbone flexibility in polythiophene and poly (3‐methylthiophene)," The Journal of Chemical Physics, vol. 101, no. 2, pp. 1369-1377, 1994.
  • [13] E. Orti, P. M. Viruela, J. Sanchez-Marin, F. Tomas, "Ab Initio Determination of the Geometric Structure and Internal Rotation Potential of 2,2'-Bithiophene," The Journal of Physical Chemistry, vol. 99, no. 14, pp. 4955-4963, 1995.
  • [14] N. Di Césare, M. Belletête, G. Durocher, M. Leclerc, "Towards a theoretical design of thermochromic polythiophenes," Chemical Physics Letters, vol. 275, no. 5-6, pp. 533-539, 1997.
  • [15] S. Samdal, E. J. Samuelsen, H. V. Volden, "Molecular conformation of 2, 2′-bithiophene determined by gas phase electron diffraction and ab initio calculations," Synthetic Metals, vol. 59, no. 2, pp. 259-265, 1993.
  • [16] G. Distefano, M. Dal Colle, D. Jones, M. Zambianchi, L. Favaretto, A. Modelli, "Electronic and geometric structure of methylthiophenes and selected dimethyl-2, 2'-bithiophenes," The Journal of Physical Chemistry, vol. 97, no. 14, pp. 3504-3509, 1993.
  • [17] M. Kofranek, T. Kovář, H. Lischka, A. Karpfen, "Ab initio studies on heterocyclic conjugated polymers: structure and vibrational spectra of thiophene, oligothiophenes and polythiophene," Journal of Molecular Structure: Theochem, vol. 259, pp. 181-198, 1992.
  • [18] G. Raos, A. Famulari, V. Marcon, "Computational reinvestigation of the bithiophene torsion potential," Chemical Physics Letters, vol. 379, no. 3-4, pp. 364-372, 2003.
  • [19] J. Zhao, P. Li, Y. Li, Z. Huang, "Theoretical investigation on conformational behavior of 2, 2′-bithiophene under the influence of external electric field at ab initio levels," Journal of Molecular Structure: Theochem, vol. 808, no. 1-3, pp. 125-134, 2007.
  • [20] J. Orza, M. Rico, J. F. Biarge, "Complete quadratic potential function for out-of-plane vibrations of thiophene," Journal of Molecular Spectroscopy, vol. 19, no. 1-4, pp. 188-202, 1966.
  • [21] Y. Furukawa, M. Akimoto, I. Harada, "Vibrational key bands and electrical conductivity of polythiophene," Synthetic Metals, vol. 18, no. 1-3, pp. 151-156, 1987.
  • [22] J. L. Navarrete, B. Tian, G. Zerbi, "Chain flexibility in polyheteroaromatic polymers part I. Electronic properties, structure and vibrational spectra of oligomers as models of polypyrrole and polythiophene," Synthetic Metals, vol. 38, no. 3, pp. 299-312, 1990.
  • [23] G. Zerbi, B. Chierichetti, O. Ingänas, "Vibrational spectra of oligothiophenes as model of polythiophenes," The Journal of Chemical Physics, vol. 94, no. 6, pp. 4637-4645, 1991.
  • [24] V. Hernández, J. Casado, L. Favaretto, G. Distefano, J. L. Navarrete, "Vibrational spectra and ab initio dft calculations of 3, 3′-and 4, 4′-dimethyl substituted 2, 2′-bithiophene," Synthetic Metals, vol. 101, no. 1-3, pp. 590-591, 1999.
  • [25] C. Alemán, V. M. Domingo, L. Fajarí, L. Juliá, A. Karpfen, "Molecular and electronic structures of heteroaromatic oligomers: Model compounds of polymers with quantum-well structures," The Journal of Organic Chemistry, vol. 63, no. 4, pp. 1041-1048, 1998.
  • [26] X. Yin, Y. Li, Y. Zhang, P. Li, J. Zhao, "Theoretical analysis of geometry-correlated conductivity of molecular wire," Chemical Physics Letters, vol. 422, no. 1-3, pp. 111-116, 2006.
  • [27] R. G. Parr, R. G. Pearson, "Absolute hardness: companion parameter to absolute electronegativity," Journal of the American Chemical Society, vol. 105, no. 26, pp. 7512-7516, 1983.
  • [28] J. Li, J. K. Tomfohr, O. F. Sankey, "Theoretical study of carotene as a molecular wire," Physica E: Low-dimensional Systems and Nanostructures, vol. 19, no. 1-2, pp. 133-138, 2003.
  • [29] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian, Inc., Wallingford CT, 2004.
  • [30] T. A. Halgren, "The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters," Journal of the American Chemical Society, vol. 114, no. 20, pp. 7827-7843, 1992.
  • [31] A. Becke, " Density- functional thermochemistry. III. The role of exact exchange," The Journal of Chemical Physics, vol. 98, p. 5648, 1993.
  • [32] C. Lee, W. Yang, R. G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," Physical Review B, vol. 37, no. 2, p. 785, 1988.
  • [33] R. Johnson, "NIST 101. Computational Chemistry Comparison and Benchmark Database",Computational Chemistry Comparison and Benchmark Database, 1999. [online],http://cccbdb.nist.gov
  • [34] M. H. Jamróz, Vibrational Energy Distribution Analysis (VEDA).Warsaw. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy Vol. 114, pp. 220-30, 2013.
  • [35] G. Keresztury, S. Holly, G. Besenyei, J. Varga, A. Wang, J. Durig, "Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N, N-dimethylthiocarbamate," Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 49, no. 13-14, pp. 2007-2026, 1993.
  • [36] D. Michalska, RAINT program. Wroclaw University of Technology, Wroclaw University of Technology, Poland. 2003.
  • [37] N. Colthup, LH,Daly and S, E Wiberley," Introduction to Infrared and Raman Spectroscopy," Academic Press Inc., New York. pp. 306-307, 1964.
  • [38] H.-H. Perkampus, L. J. Bellamy: "The Infrared Spectra of Complex Molecules" Berichte der Bunsengesellschaft für physikalische Chemie, vol. 80, no. 1, pp. 99-100, 1976.
  • [39] J. B. Lambert, H. F. Shurvell, D. A. Lightner, R. G. Cooks, "Introduction to organic spectroscopy." DA Lightner, RG Cooks. Macmillan Publishing Company, 1987.
  • [40] B. H. Stuart, "Infrared spectroscopy: fundamentals and applications". John Wiley & Sons Ltd., The Atrium, 1-110, 2004.
  • [41] R. Silverstein, F. Webster, D. Kiemle, "Spectrometric Identification of Organic Compounds, John Willey & Sons, New York. 2005.
  • [42] L. G. Wade Jr, "Organic Chemistry 6th Edition" Pearson Prentice Hall, Upper Saddle River, N.J., 2006
  • [43] L.G. Wade, "Organic Chemistry", New Jersey: Pearson Prentice Hall, 2006.
  • [44] M. Rofouei, E. Fereyduni, N. Sohrabi, M. Sham sipur, J. A. Gharamaleki, N. Sundaraganesan, "Synthesis, X-ray crystallography characterization, vibrational spectroscopic, molecular electrostatic potential maps, thermodynamic properties studies of N, N′-di (p-thiazole) formamidine." Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 78, p. 88, 2011.
  • [45] R. G. Pearson, "Absolute electronegativity and hardness correlated with molecular orbital theory," Proceedings of the National Academy of Sciences, vol. 83, no. 22, pp. 8440-8441, 1986.
  • [46] K. Fukui, "Role of frontier orbitals in chemical reactions," Science, vol. 218, no. 4574, pp. 747-754, 1982.
  • [47] S. Chtita , G., Mounir, L., Majdouline, A. Azeddine, R. Hmammouchi, B., Mohammed, L.Tahar, "Prediction of biological activity of imidazo [1, 2-a] pyrazine derivatives by combining DFT and QSAR results," The International Journal of Innovative Research in Science, Engineering and Technology, vol. 2, no. 12, p. 7962, 2013.
  • [48] J. S. Murray, K. Das Sen, "Molecular Electrostatic Potentials: Concepts and Applications." Elsevier Science Limited, 1996
  • [49] A. Pîrnău C. Vasile, O. Ovidiu, L. Nicolae, S., Laszlo, B., Maria, C., Onuc., "Vibrational and DFT study of 5-( 3-pyridyl- methylidene) -thiazolidine-2-thione- 4-one," Vibrational spectroscopy, vol. 48, no. 2, pp. 289-296, 2008.

A Vibrational Spectroscopic Investigation of 2,2'-Bithiophene Using Experimental and DFT Methods

Year 2023, , 452 - 463, 30.04.2023
https://doi.org/10.16984/saufenbilder.1181968

Abstract

Organic compounds like 2,2’-Bithiophene (with a synonym. 2,2'-bithienyl, 2,2'-dithienyl)-containing bis(dioxaborin) have drawn significant concern in the area of materials science because of their electron affinity and luminescent properties. With this motivation, we have been concentrating on the properties and functions of 2,2'-Bithiophene. The vibrational frequencies of the molecule 2,2'-Bithiophene in the solid phase were recorded using the Fourier Transformed-Infrared (FT-IR) and FT-Raman spectrometers. Meanwhile, the molecular geometric parameters, the spectral wavenumbers, HOMO-LUMO analysis and the molecular electrostatic potential (MEP) of the 2,2'-Bithiophene molecule were computed at the B3LYP/ 6-311++G (d,p) level of the theory. Furthermore, a comparison between experimental and calculated values for the vibrational frequencies of the 2,2'-Bithiophene molecule exhibits a good agreement.

Project Number

161710003

References

  • [1] A. M. Mishra, C. Q. Ma, P. Bauerle, "Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications," Chemical Reviews, vol. 109, no. 3, pp. 1141-1276, 2009.
  • [2] N. Agarwal, P. K. Nayak, F. Ali, M. P. Patankar, K. Narasimhan, N. Periasamy, "Tuning of HOMO levels of carbazole derivatives: New molecules for blue OLED," Synthetic Metals, vol. 161, no. 5-6, pp. 466-473, 2011.
  • [3] W.-Y. Hung, L.-C. Chi, W.-J. Chen, Y.-M. Chen, S.-H. Chou, K.-T. Wong, "A new benzimidazole/carbazole hybrid bipolar material for highly efficient deep-blue electrofluorescence,yellow–green electrophosphorescence, and two-color-based white OLEDs," Journal of Materials Chemistry, vol. 20, no. 45, pp. 10113-10119, 2010.
  • [4] M.-C. Cui, Z.-J. Li, R.-K. Tang, B.-L. Liu, "Synthesis and evaluation of novel benzothiazole derivatives based on the bithiophene structure as potential radiotracers for β-amyloid plaques in Alzheimer’s disease," Bioorganic & Medicinal Chemistry Letters, vol. 18, no. 7, pp. 2777-2784, 2010.
  • [5] Y. Lin, Y. Li, X. Zhan, "Small molecule semiconductors for high-efficiency organic photovoltaics," Chemical Society Reviews, vol. 41, no. 11, pp. 4245-4272, 2012.
  • [6] Y. Yang, X.-H. Duan, J.-Y. Deng, B. Jin, H.-M. Jia, B.-L. Liu, "Novel imaging agents for β-amyloid plaque based on the N-benzoylindole core," Bioorganic & Medicinal Chemistry Letters, vol. 21, no. 18, pp. 5594-5597, 2011.
  • [7] A. Almenningen, O. Bastiansen, P. Svendsas, "Electron Diffraction Studies of 2, 2’-Dithienyl Vapour," Acta Chemica Scandinavica, vol. 12, no. 8, 1958.
  • [8] G. Visser, G. Heeres, J. Wolters, A. Vos, "Disorder in crystals of the dithienyls and β-thiophenicacid," Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol. 24, no. 4, pp. 467-473, 1968.
  • [9] P. Bucci, M. Longeri, C. A. Veracini, L. Lunazzi, "Nematic phase nuclear magnetic resonance investigations of rotational isomerism. III. Conformational preferences and interconversion barrier of 2, 2'-bithienyl," Journal of the American Chemical Society, vol. 96, no. 5, pp. 1305-1309, 1974.
  • [10] D. Smith, Z. Yu, A. Saxena, R. Martin, A. Bishop, "Molecular Geometry Fluctuation Model for the Mobility of Conjugated Polymers," Physical Review Letters vol. 24, no. 84-4 pp. 721-4, 2000.
  • [11] C. Alemán, L. Julià, "Characterization of the Quinoid Structure for the 2,2‘-Bithiophene and 2,2‘,5‘,2 ‘‘-Terthiophene Dications," The Journal of Physical Chemistry, vol. 100, no. 35, pp. 14661-14664, 1996.
  • [12] V. Hernandez, J. Lopez Navarrete, "Ab initio study of torsional potentials in 2, 2’‐bithiophene and 3,4’‐and 3,3’‐dimethyl‐2, 2’‐bithiophene as models of the backbone flexibility in polythiophene and poly (3‐methylthiophene)," The Journal of Chemical Physics, vol. 101, no. 2, pp. 1369-1377, 1994.
  • [13] E. Orti, P. M. Viruela, J. Sanchez-Marin, F. Tomas, "Ab Initio Determination of the Geometric Structure and Internal Rotation Potential of 2,2'-Bithiophene," The Journal of Physical Chemistry, vol. 99, no. 14, pp. 4955-4963, 1995.
  • [14] N. Di Césare, M. Belletête, G. Durocher, M. Leclerc, "Towards a theoretical design of thermochromic polythiophenes," Chemical Physics Letters, vol. 275, no. 5-6, pp. 533-539, 1997.
  • [15] S. Samdal, E. J. Samuelsen, H. V. Volden, "Molecular conformation of 2, 2′-bithiophene determined by gas phase electron diffraction and ab initio calculations," Synthetic Metals, vol. 59, no. 2, pp. 259-265, 1993.
  • [16] G. Distefano, M. Dal Colle, D. Jones, M. Zambianchi, L. Favaretto, A. Modelli, "Electronic and geometric structure of methylthiophenes and selected dimethyl-2, 2'-bithiophenes," The Journal of Physical Chemistry, vol. 97, no. 14, pp. 3504-3509, 1993.
  • [17] M. Kofranek, T. Kovář, H. Lischka, A. Karpfen, "Ab initio studies on heterocyclic conjugated polymers: structure and vibrational spectra of thiophene, oligothiophenes and polythiophene," Journal of Molecular Structure: Theochem, vol. 259, pp. 181-198, 1992.
  • [18] G. Raos, A. Famulari, V. Marcon, "Computational reinvestigation of the bithiophene torsion potential," Chemical Physics Letters, vol. 379, no. 3-4, pp. 364-372, 2003.
  • [19] J. Zhao, P. Li, Y. Li, Z. Huang, "Theoretical investigation on conformational behavior of 2, 2′-bithiophene under the influence of external electric field at ab initio levels," Journal of Molecular Structure: Theochem, vol. 808, no. 1-3, pp. 125-134, 2007.
  • [20] J. Orza, M. Rico, J. F. Biarge, "Complete quadratic potential function for out-of-plane vibrations of thiophene," Journal of Molecular Spectroscopy, vol. 19, no. 1-4, pp. 188-202, 1966.
  • [21] Y. Furukawa, M. Akimoto, I. Harada, "Vibrational key bands and electrical conductivity of polythiophene," Synthetic Metals, vol. 18, no. 1-3, pp. 151-156, 1987.
  • [22] J. L. Navarrete, B. Tian, G. Zerbi, "Chain flexibility in polyheteroaromatic polymers part I. Electronic properties, structure and vibrational spectra of oligomers as models of polypyrrole and polythiophene," Synthetic Metals, vol. 38, no. 3, pp. 299-312, 1990.
  • [23] G. Zerbi, B. Chierichetti, O. Ingänas, "Vibrational spectra of oligothiophenes as model of polythiophenes," The Journal of Chemical Physics, vol. 94, no. 6, pp. 4637-4645, 1991.
  • [24] V. Hernández, J. Casado, L. Favaretto, G. Distefano, J. L. Navarrete, "Vibrational spectra and ab initio dft calculations of 3, 3′-and 4, 4′-dimethyl substituted 2, 2′-bithiophene," Synthetic Metals, vol. 101, no. 1-3, pp. 590-591, 1999.
  • [25] C. Alemán, V. M. Domingo, L. Fajarí, L. Juliá, A. Karpfen, "Molecular and electronic structures of heteroaromatic oligomers: Model compounds of polymers with quantum-well structures," The Journal of Organic Chemistry, vol. 63, no. 4, pp. 1041-1048, 1998.
  • [26] X. Yin, Y. Li, Y. Zhang, P. Li, J. Zhao, "Theoretical analysis of geometry-correlated conductivity of molecular wire," Chemical Physics Letters, vol. 422, no. 1-3, pp. 111-116, 2006.
  • [27] R. G. Parr, R. G. Pearson, "Absolute hardness: companion parameter to absolute electronegativity," Journal of the American Chemical Society, vol. 105, no. 26, pp. 7512-7516, 1983.
  • [28] J. Li, J. K. Tomfohr, O. F. Sankey, "Theoretical study of carotene as a molecular wire," Physica E: Low-dimensional Systems and Nanostructures, vol. 19, no. 1-2, pp. 133-138, 2003.
  • [29] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian, Inc., Wallingford CT, 2004.
  • [30] T. A. Halgren, "The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters," Journal of the American Chemical Society, vol. 114, no. 20, pp. 7827-7843, 1992.
  • [31] A. Becke, " Density- functional thermochemistry. III. The role of exact exchange," The Journal of Chemical Physics, vol. 98, p. 5648, 1993.
  • [32] C. Lee, W. Yang, R. G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," Physical Review B, vol. 37, no. 2, p. 785, 1988.
  • [33] R. Johnson, "NIST 101. Computational Chemistry Comparison and Benchmark Database",Computational Chemistry Comparison and Benchmark Database, 1999. [online],http://cccbdb.nist.gov
  • [34] M. H. Jamróz, Vibrational Energy Distribution Analysis (VEDA).Warsaw. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy Vol. 114, pp. 220-30, 2013.
  • [35] G. Keresztury, S. Holly, G. Besenyei, J. Varga, A. Wang, J. Durig, "Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N, N-dimethylthiocarbamate," Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 49, no. 13-14, pp. 2007-2026, 1993.
  • [36] D. Michalska, RAINT program. Wroclaw University of Technology, Wroclaw University of Technology, Poland. 2003.
  • [37] N. Colthup, LH,Daly and S, E Wiberley," Introduction to Infrared and Raman Spectroscopy," Academic Press Inc., New York. pp. 306-307, 1964.
  • [38] H.-H. Perkampus, L. J. Bellamy: "The Infrared Spectra of Complex Molecules" Berichte der Bunsengesellschaft für physikalische Chemie, vol. 80, no. 1, pp. 99-100, 1976.
  • [39] J. B. Lambert, H. F. Shurvell, D. A. Lightner, R. G. Cooks, "Introduction to organic spectroscopy." DA Lightner, RG Cooks. Macmillan Publishing Company, 1987.
  • [40] B. H. Stuart, "Infrared spectroscopy: fundamentals and applications". John Wiley & Sons Ltd., The Atrium, 1-110, 2004.
  • [41] R. Silverstein, F. Webster, D. Kiemle, "Spectrometric Identification of Organic Compounds, John Willey & Sons, New York. 2005.
  • [42] L. G. Wade Jr, "Organic Chemistry 6th Edition" Pearson Prentice Hall, Upper Saddle River, N.J., 2006
  • [43] L.G. Wade, "Organic Chemistry", New Jersey: Pearson Prentice Hall, 2006.
  • [44] M. Rofouei, E. Fereyduni, N. Sohrabi, M. Sham sipur, J. A. Gharamaleki, N. Sundaraganesan, "Synthesis, X-ray crystallography characterization, vibrational spectroscopic, molecular electrostatic potential maps, thermodynamic properties studies of N, N′-di (p-thiazole) formamidine." Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 78, p. 88, 2011.
  • [45] R. G. Pearson, "Absolute electronegativity and hardness correlated with molecular orbital theory," Proceedings of the National Academy of Sciences, vol. 83, no. 22, pp. 8440-8441, 1986.
  • [46] K. Fukui, "Role of frontier orbitals in chemical reactions," Science, vol. 218, no. 4574, pp. 747-754, 1982.
  • [47] S. Chtita , G., Mounir, L., Majdouline, A. Azeddine, R. Hmammouchi, B., Mohammed, L.Tahar, "Prediction of biological activity of imidazo [1, 2-a] pyrazine derivatives by combining DFT and QSAR results," The International Journal of Innovative Research in Science, Engineering and Technology, vol. 2, no. 12, p. 7962, 2013.
  • [48] J. S. Murray, K. Das Sen, "Molecular Electrostatic Potentials: Concepts and Applications." Elsevier Science Limited, 1996
  • [49] A. Pîrnău C. Vasile, O. Ovidiu, L. Nicolae, S., Laszlo, B., Maria, C., Onuc., "Vibrational and DFT study of 5-( 3-pyridyl- methylidene) -thiazolidine-2-thione- 4-one," Vibrational spectroscopy, vol. 48, no. 2, pp. 289-296, 2008.
There are 49 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Ebru Karakaş Sarıkaya 0000-0003-2149-9341

Ömer Dereli 0000-0002-9031-8092

Semiha Bahçeli 0000-0002-5614-325X

Feride Pınar Özturan 0000-0002-8010-1498

Project Number 161710003
Publication Date April 30, 2023
Submission Date September 29, 2022
Acceptance Date February 7, 2023
Published in Issue Year 2023

Cite

APA Karakaş Sarıkaya, E., Dereli, Ö., Bahçeli, S., Özturan, F. P. (2023). A Vibrational Spectroscopic Investigation of 2,2’-Bithiophene Using Experimental and DFT Methods. Sakarya University Journal of Science, 27(2), 452-463. https://doi.org/10.16984/saufenbilder.1181968
AMA Karakaş Sarıkaya E, Dereli Ö, Bahçeli S, Özturan FP. A Vibrational Spectroscopic Investigation of 2,2’-Bithiophene Using Experimental and DFT Methods. SAUJS. April 2023;27(2):452-463. doi:10.16984/saufenbilder.1181968
Chicago Karakaş Sarıkaya, Ebru, Ömer Dereli, Semiha Bahçeli, and Feride Pınar Özturan. “A Vibrational Spectroscopic Investigation of 2,2’-Bithiophene Using Experimental and DFT Methods”. Sakarya University Journal of Science 27, no. 2 (April 2023): 452-63. https://doi.org/10.16984/saufenbilder.1181968.
EndNote Karakaş Sarıkaya E, Dereli Ö, Bahçeli S, Özturan FP (April 1, 2023) A Vibrational Spectroscopic Investigation of 2,2’-Bithiophene Using Experimental and DFT Methods. Sakarya University Journal of Science 27 2 452–463.
IEEE E. Karakaş Sarıkaya, Ö. Dereli, S. Bahçeli, and F. P. Özturan, “A Vibrational Spectroscopic Investigation of 2,2’-Bithiophene Using Experimental and DFT Methods”, SAUJS, vol. 27, no. 2, pp. 452–463, 2023, doi: 10.16984/saufenbilder.1181968.
ISNAD Karakaş Sarıkaya, Ebru et al. “A Vibrational Spectroscopic Investigation of 2,2’-Bithiophene Using Experimental and DFT Methods”. Sakarya University Journal of Science 27/2 (April 2023), 452-463. https://doi.org/10.16984/saufenbilder.1181968.
JAMA Karakaş Sarıkaya E, Dereli Ö, Bahçeli S, Özturan FP. A Vibrational Spectroscopic Investigation of 2,2’-Bithiophene Using Experimental and DFT Methods. SAUJS. 2023;27:452–463.
MLA Karakaş Sarıkaya, Ebru et al. “A Vibrational Spectroscopic Investigation of 2,2’-Bithiophene Using Experimental and DFT Methods”. Sakarya University Journal of Science, vol. 27, no. 2, 2023, pp. 452-63, doi:10.16984/saufenbilder.1181968.
Vancouver Karakaş Sarıkaya E, Dereli Ö, Bahçeli S, Özturan FP. A Vibrational Spectroscopic Investigation of 2,2’-Bithiophene Using Experimental and DFT Methods. SAUJS. 2023;27(2):452-63.