Research Article
BibTex RIS Cite
Year 2023, , 757 - 767, 25.08.2023
https://doi.org/10.16984/saufenbilder.1241020

Abstract

References

  • [1] I. Udom, M. K. Ram, E. K. Stefanakos, A. F. Hepp, D. Y. Goswami, “One dimensional-ZnO nanostructures: Synthesis, properties and environmental applications”, Materials Science in Semiconductor Processing, vol. 16, no. 6, pp. 2070–2083, 2013.
  • [2] M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, A. Z. Moshfegh, “Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review”, Research on Chemical Intermediates, vol. 45, pp. 2197–2254, (2019).
  • [3] C. J. Chang, M. H. Hsu, Y. C. Weng, C. Y. Tsay, C. K. Lin, “Hierarchical ZnO nanorod-array films with enhanced photocatalytic performance”, Thin Solid Films, vol. 528, pp. 167–174, 2013.
  • [4] T. Cossuet, E. Appert, J. L. Thomassin, V. Consonni, “Polarity-Dependent Growth Rates of Selective Area Grown ZnO Nanorods by Chemical Bath Deposition”, Langmuir, vol. 33, no. 25, pp. 6269–6279, 2017.
  • [5] B. Astinchap, R. Moradian, M. N. Tekyeh, “Investigating the optical properties of synthesized ZnO nanostructures by sol-gel: The role of zinc precursors and annealing time”, Optik, vol. 127, no. 20, pp. 9871–9877, 2016.
  • [6] A. A. Mohd Raub, J. Yunas, M. A. Mohamed, B. Bais, A. A. Hamzah, J. Ridwan, J. Kazmi, M. A. Hassan, “Synthesis and characterization of ZnO NRs with spray coated GO for enhanced photocatalytic activity”, Ceramics International, vol. 48, no. 13, pp. 18238-18245, 2022.
  • [7] N. Lepot, M. K. Van Bael, H. Van den Rul, J. D’Haen, R. Peeters, D. Franco, J. Mullens, “Synthesis of ZnO nanorods from aqueous solution”, Materials Letters, vol. 61, no. 13, pp. 2624–2627, 2007.
  • [8] L. Xu, Y. L. Hu, C. Pelligra, C. H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S. L. Suib, “ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity”, Chemistry of Materials, vol. 21, no. 13, pp. 2875–2885, 2009.
  • [9] N. T. Son, J. S. Noh, S. Park, “Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition”, Applied Surface Science, vol. 379, pp. 440-445, 2016.
  • [10] M. Kardeş, G. Başaran Dindaş, H. C. Yatmaz, N. Dizge, K. Öztürk, “CBD grown pure and Ce-doped ZnO nanorods: Comparison of their photocatalytic degrading efficiencies on AR88 azo dye under visible light irradiation”, Colloids Surface A Physicochemical Engineering Aspects, vol. 607, pp. 125451, 2020.
  • [11] K. Mosalagae, D. M. Murape, L. M. Lepodise, “Effects of growth conditions on properties of CBD synthesized ZnO nanorods grown on ultrasonic spray pyrolysis deposited ZnO seed layers”, Heliyon, vol. 6, no. 7, pp. e04458, 2020.
  • [12] M. Poornajar, P. Marashi, D. H. Fatmehsari, M. K. Esfahani, “Synthesis of ZnO nanorods via chemical bath deposition method: The effects of physicochemical factors”, Ceramics International, vol. 42, no. 1, pp. 173–184, 2016.
  • [13] A. F. Abdulrahman, S. M. Ahmed, S. M. Hamad, A. A. Barzinjy, “Effect of Growth Temperature on Morphological, Structural, and Optical Properties of ZnO Nanorods Using Modified Chemical Bath Deposition Method”, Journal of Electronic Materials, vol. 50, pp.1482–1495, 2021.
  • [14] Q. Liu, T. Yasui, K. Nagashima, T. Yanagida, M. Hara, M. Horiuchi, Z. Zhu, H. Takahashi, T. Shimada, A. Arima, Y. Baba, “Ammonia-Induced Seed Layer Transformations in a Hydrothermal Growth Process of Zinc Oxide Nanowires”, The Journal of Physical Chemistry C, vol. 124, no. 37, pp. 20563-20568. [15] S. Guillemin, L. Rapenne, H. Roussel, E. Sarigiannidou, G. Brémond, V. Consonni, “Formation mechanisms of ZnO nanowires: The crucial role of crystal orientation and polarity”, The Journal of Physical Chemistry C, vol. 117, no. 40, pp. 20738–20745, 2013.
  • [16] A. S. Kamble, B. B. Sinha, K. Chung, M. G. Gil, V. Burungale, C. J. Park, J. H. Kim, P. S. Patil, “Effect of hydroxide anion generating agents on growth and properties of ZnO nanorod arrays”, Electrochimica Acta, vol. 149, pp. 386–393, 2014.
  • [17] A. F. Abdulrahman, “Study the optical properties of the various deposition solutions of ZnO nanorods grown on glass substrate using chemical bath deposition technique”, Journal of Ovonic Research, vol. 16, no. 3, pp. 181–188, 2020.
  • [18] V. Strano, R. Giovanni Urso, M. Scuderi, K. O. Iwu, F. Simone, E. Ciliberto, C. Spinella, S. Mirabella, “Double Role of HMTA in ZnO Nanorods Grown by Chemical Bath Deposition”, The Journal of Physical Chemistry C, vol. 118, no. 48, pp. 28189–28195, 2014.
  • [19] B. Ikizler, S. M. Peker, “Effect of the seed layer thickness on the stability of ZnO nanorod arrays”, Thin Solid Films, vol. 558, pp. 149–159, 2014.
  • [20] S. Guillemin, V. Consonni, E. Appert, E. Puyoo, L. Rapenne, H. Roussel, “Critical nucleation effects on the structural relationship between ZnO seed layer and nanowires”, The Journal of Physical Chemistry C, vol. 116, no. 47, pp. 25106–25111, 2012.
  • [21] M. Kardeş, K. Öztürk, “Photocatalyst ZnO nanorod arrays on glass substrates: the critical role of seed layer in nanorod alignment and photocatalytic efficiencies”, Chemical Engineering Communication, vol. 207, no. 11, pp. 1522-1535, 2020.
  • [22] J. Singh, S. S. Patil, M. A. More, D. S. Joag, R. S. Tiwari, O. N. Srivastava, “Formation of aligned ZnO nanorods on self-grown ZnO template and its enhanced field emission characteristics”, Applied Surface Science, vol. 256, no. 21, pp. 6157–6163, 2010.
  • [23] P. Gu, X. Zhu, D. Yang, “Vertically aligned ZnO nanorods arrays grown by chemical bath deposition for ultraviolet photodetectors with high response performance”, Journal of Alloys and Compounds, vol. 815, pp. 152346, 2020.
  • [24] Y. Kajikawa, S. Noda, H. Komiyama, “Preferred orientation of chemical vapor deposited polycrystalline silicon carbide films”, Chemical Vapor Deposition, vol. 8, no. 3, pp. 99–104, 2002.
  • [25] A. Leelavathi, G. Madras, N. Ravishankar, “Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods”, Physical Chemistry Chemical Physics, vol. 15, no. 26, pp. 10795–10802, 2013.
  • [26] A. Das, R. G. Nair, “Effect of aspect ratio on photocatalytic performance of hexagonal ZnO nanorods”, Journal of Alloys and Compounds, vol. 817, pp. 153277, 2020.
  • [27] K. M. McPeak, T. P. Le, N. G. Britton, Z. S. Nickolov, Y. A. Elabd, J. B. Baxter, “Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): Understanding the role of HMTA in ZnO nanowire growth”, Langmuir, vol. 27, no. 7, pp. 3672–3677, 2011.
  • [28] R. Parize, J. Garnier, O. Chaix-Pluchery, C. Verrier, E. Appert, V. Consonni, “Effects of Hexamethylenetetramine on the nucleation and radial growth of ZnO nanowires by chemical bath deposition”, Journal of Physical Chemistry C., vol. 120, no. 9, pp. 5242–5250, 2016.
  • [29] W. Feng, B. Wang, P. Huang, X. Wang, J. Yu, C. Wang, “Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine (HMTA): Understanding the role of HMTA in the formation of ZnO crystals”, Materials Science in Semiconductor Processing, vol. 41, pp. 462–469, 2016.
  • [30] H. Avireddy, H. Kannan, P. Shankar, G. K. Mani, A. J. Kulandaisamy, J. B. B. Rayappan, “Non-mutually exclusive dual role of hexamethylenetetramine on the growth of ZnO nanostructures and their sensing footprints”, Materials Chemistry and Physics, vol. 212, pp. 394–402, 2018.

Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content

Year 2023, , 757 - 767, 25.08.2023
https://doi.org/10.16984/saufenbilder.1241020

Abstract

The effects of zinc ion concentration and hexamethylene tetramine (HMTA) content of the aqueous precursor solution on the aspect ratios of the one-dimensional (1D) ZnO nanorods during chemical bath deposition (CBD) were investigated. The ZnO nanorods were grown on these seeded substrates by the low-temperature CBD method at 95 °C for 5 h. In the first part of this investigation the zinc nitrate hexahydrate (ZNH) to HMTA molar ratio was kept constant at a ratio of 1:1 for each of the CBD solutions prepared with different Zn^(+2) ion concentrations of 0.025, 0.035, 0.050, and 0.075 M. The number densities of the nanorods (i.e., number of nanorods per unit area) were increased with the increasing concentration. In the second part, the ZNH to HMTA molar ratio was varied to differ from the 1:1 value and, in turn, to obtain the precursor solutions relatively rich in Zn^(+2) or OH^-ions. Here, the concentration of the precursor solution was kept constant at 0.05 M. The lateral growth perpendicular to the c-axis of the ZnO nanorods was found to be suppressed with the increasing HMTA content (e.g., for the ZNH to HMTA molar ratio of 0.4: 1) due to its capping effect. However, the precursor solution containing an excessive amount of HMTA led to a decrease in the probability of crystal growth, which has been attributed to the OH^- ion enrichment.

References

  • [1] I. Udom, M. K. Ram, E. K. Stefanakos, A. F. Hepp, D. Y. Goswami, “One dimensional-ZnO nanostructures: Synthesis, properties and environmental applications”, Materials Science in Semiconductor Processing, vol. 16, no. 6, pp. 2070–2083, 2013.
  • [2] M. Samadi, M. Zirak, A. Naseri, M. Kheirabadi, M. Ebrahimi, A. Z. Moshfegh, “Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review”, Research on Chemical Intermediates, vol. 45, pp. 2197–2254, (2019).
  • [3] C. J. Chang, M. H. Hsu, Y. C. Weng, C. Y. Tsay, C. K. Lin, “Hierarchical ZnO nanorod-array films with enhanced photocatalytic performance”, Thin Solid Films, vol. 528, pp. 167–174, 2013.
  • [4] T. Cossuet, E. Appert, J. L. Thomassin, V. Consonni, “Polarity-Dependent Growth Rates of Selective Area Grown ZnO Nanorods by Chemical Bath Deposition”, Langmuir, vol. 33, no. 25, pp. 6269–6279, 2017.
  • [5] B. Astinchap, R. Moradian, M. N. Tekyeh, “Investigating the optical properties of synthesized ZnO nanostructures by sol-gel: The role of zinc precursors and annealing time”, Optik, vol. 127, no. 20, pp. 9871–9877, 2016.
  • [6] A. A. Mohd Raub, J. Yunas, M. A. Mohamed, B. Bais, A. A. Hamzah, J. Ridwan, J. Kazmi, M. A. Hassan, “Synthesis and characterization of ZnO NRs with spray coated GO for enhanced photocatalytic activity”, Ceramics International, vol. 48, no. 13, pp. 18238-18245, 2022.
  • [7] N. Lepot, M. K. Van Bael, H. Van den Rul, J. D’Haen, R. Peeters, D. Franco, J. Mullens, “Synthesis of ZnO nanorods from aqueous solution”, Materials Letters, vol. 61, no. 13, pp. 2624–2627, 2007.
  • [8] L. Xu, Y. L. Hu, C. Pelligra, C. H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S. L. Suib, “ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity”, Chemistry of Materials, vol. 21, no. 13, pp. 2875–2885, 2009.
  • [9] N. T. Son, J. S. Noh, S. Park, “Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition”, Applied Surface Science, vol. 379, pp. 440-445, 2016.
  • [10] M. Kardeş, G. Başaran Dindaş, H. C. Yatmaz, N. Dizge, K. Öztürk, “CBD grown pure and Ce-doped ZnO nanorods: Comparison of their photocatalytic degrading efficiencies on AR88 azo dye under visible light irradiation”, Colloids Surface A Physicochemical Engineering Aspects, vol. 607, pp. 125451, 2020.
  • [11] K. Mosalagae, D. M. Murape, L. M. Lepodise, “Effects of growth conditions on properties of CBD synthesized ZnO nanorods grown on ultrasonic spray pyrolysis deposited ZnO seed layers”, Heliyon, vol. 6, no. 7, pp. e04458, 2020.
  • [12] M. Poornajar, P. Marashi, D. H. Fatmehsari, M. K. Esfahani, “Synthesis of ZnO nanorods via chemical bath deposition method: The effects of physicochemical factors”, Ceramics International, vol. 42, no. 1, pp. 173–184, 2016.
  • [13] A. F. Abdulrahman, S. M. Ahmed, S. M. Hamad, A. A. Barzinjy, “Effect of Growth Temperature on Morphological, Structural, and Optical Properties of ZnO Nanorods Using Modified Chemical Bath Deposition Method”, Journal of Electronic Materials, vol. 50, pp.1482–1495, 2021.
  • [14] Q. Liu, T. Yasui, K. Nagashima, T. Yanagida, M. Hara, M. Horiuchi, Z. Zhu, H. Takahashi, T. Shimada, A. Arima, Y. Baba, “Ammonia-Induced Seed Layer Transformations in a Hydrothermal Growth Process of Zinc Oxide Nanowires”, The Journal of Physical Chemistry C, vol. 124, no. 37, pp. 20563-20568. [15] S. Guillemin, L. Rapenne, H. Roussel, E. Sarigiannidou, G. Brémond, V. Consonni, “Formation mechanisms of ZnO nanowires: The crucial role of crystal orientation and polarity”, The Journal of Physical Chemistry C, vol. 117, no. 40, pp. 20738–20745, 2013.
  • [16] A. S. Kamble, B. B. Sinha, K. Chung, M. G. Gil, V. Burungale, C. J. Park, J. H. Kim, P. S. Patil, “Effect of hydroxide anion generating agents on growth and properties of ZnO nanorod arrays”, Electrochimica Acta, vol. 149, pp. 386–393, 2014.
  • [17] A. F. Abdulrahman, “Study the optical properties of the various deposition solutions of ZnO nanorods grown on glass substrate using chemical bath deposition technique”, Journal of Ovonic Research, vol. 16, no. 3, pp. 181–188, 2020.
  • [18] V. Strano, R. Giovanni Urso, M. Scuderi, K. O. Iwu, F. Simone, E. Ciliberto, C. Spinella, S. Mirabella, “Double Role of HMTA in ZnO Nanorods Grown by Chemical Bath Deposition”, The Journal of Physical Chemistry C, vol. 118, no. 48, pp. 28189–28195, 2014.
  • [19] B. Ikizler, S. M. Peker, “Effect of the seed layer thickness on the stability of ZnO nanorod arrays”, Thin Solid Films, vol. 558, pp. 149–159, 2014.
  • [20] S. Guillemin, V. Consonni, E. Appert, E. Puyoo, L. Rapenne, H. Roussel, “Critical nucleation effects on the structural relationship between ZnO seed layer and nanowires”, The Journal of Physical Chemistry C, vol. 116, no. 47, pp. 25106–25111, 2012.
  • [21] M. Kardeş, K. Öztürk, “Photocatalyst ZnO nanorod arrays on glass substrates: the critical role of seed layer in nanorod alignment and photocatalytic efficiencies”, Chemical Engineering Communication, vol. 207, no. 11, pp. 1522-1535, 2020.
  • [22] J. Singh, S. S. Patil, M. A. More, D. S. Joag, R. S. Tiwari, O. N. Srivastava, “Formation of aligned ZnO nanorods on self-grown ZnO template and its enhanced field emission characteristics”, Applied Surface Science, vol. 256, no. 21, pp. 6157–6163, 2010.
  • [23] P. Gu, X. Zhu, D. Yang, “Vertically aligned ZnO nanorods arrays grown by chemical bath deposition for ultraviolet photodetectors with high response performance”, Journal of Alloys and Compounds, vol. 815, pp. 152346, 2020.
  • [24] Y. Kajikawa, S. Noda, H. Komiyama, “Preferred orientation of chemical vapor deposited polycrystalline silicon carbide films”, Chemical Vapor Deposition, vol. 8, no. 3, pp. 99–104, 2002.
  • [25] A. Leelavathi, G. Madras, N. Ravishankar, “Origin of enhanced photocatalytic activity and photoconduction in high aspect ratio ZnO nanorods”, Physical Chemistry Chemical Physics, vol. 15, no. 26, pp. 10795–10802, 2013.
  • [26] A. Das, R. G. Nair, “Effect of aspect ratio on photocatalytic performance of hexagonal ZnO nanorods”, Journal of Alloys and Compounds, vol. 817, pp. 153277, 2020.
  • [27] K. M. McPeak, T. P. Le, N. G. Britton, Z. S. Nickolov, Y. A. Elabd, J. B. Baxter, “Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): Understanding the role of HMTA in ZnO nanowire growth”, Langmuir, vol. 27, no. 7, pp. 3672–3677, 2011.
  • [28] R. Parize, J. Garnier, O. Chaix-Pluchery, C. Verrier, E. Appert, V. Consonni, “Effects of Hexamethylenetetramine on the nucleation and radial growth of ZnO nanowires by chemical bath deposition”, Journal of Physical Chemistry C., vol. 120, no. 9, pp. 5242–5250, 2016.
  • [29] W. Feng, B. Wang, P. Huang, X. Wang, J. Yu, C. Wang, “Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine (HMTA): Understanding the role of HMTA in the formation of ZnO crystals”, Materials Science in Semiconductor Processing, vol. 41, pp. 462–469, 2016.
  • [30] H. Avireddy, H. Kannan, P. Shankar, G. K. Mani, A. J. Kulandaisamy, J. B. B. Rayappan, “Non-mutually exclusive dual role of hexamethylenetetramine on the growth of ZnO nanostructures and their sensing footprints”, Materials Chemistry and Physics, vol. 212, pp. 394–402, 2018.
There are 29 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Memnune Kardeş 0000-0002-5073-6564

Koray Öztürk 0000-0003-1795-0777

Early Pub Date August 19, 2023
Publication Date August 25, 2023
Submission Date January 23, 2023
Acceptance Date April 20, 2023
Published in Issue Year 2023

Cite

APA Kardeş, M., & Öztürk, K. (2023). Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content. Sakarya University Journal of Science, 27(4), 757-767. https://doi.org/10.16984/saufenbilder.1241020
AMA Kardeş M, Öztürk K. Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content. SAUJS. August 2023;27(4):757-767. doi:10.16984/saufenbilder.1241020
Chicago Kardeş, Memnune, and Koray Öztürk. “Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content”. Sakarya University Journal of Science 27, no. 4 (August 2023): 757-67. https://doi.org/10.16984/saufenbilder.1241020.
EndNote Kardeş M, Öztürk K (August 1, 2023) Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content. Sakarya University Journal of Science 27 4 757–767.
IEEE M. Kardeş and K. Öztürk, “Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content”, SAUJS, vol. 27, no. 4, pp. 757–767, 2023, doi: 10.16984/saufenbilder.1241020.
ISNAD Kardeş, Memnune - Öztürk, Koray. “Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content”. Sakarya University Journal of Science 27/4 (August 2023), 757-767. https://doi.org/10.16984/saufenbilder.1241020.
JAMA Kardeş M, Öztürk K. Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content. SAUJS. 2023;27:757–767.
MLA Kardeş, Memnune and Koray Öztürk. “Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content”. Sakarya University Journal of Science, vol. 27, no. 4, 2023, pp. 757-6, doi:10.16984/saufenbilder.1241020.
Vancouver Kardeş M, Öztürk K. Two Significant Factors Affecting the Dimensions of the ZnO Nanorods During Chemical Bath Deposition: Precursor Solution Concentration and HMTA Content. SAUJS. 2023;27(4):757-6.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.