Research Article
BibTex RIS Cite

Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites

Year 2023, , 1141 - 1149, 18.10.2023
https://doi.org/10.16984/saufenbilder.1250945

Abstract

In this paper, the internal structure and dielectric properties of unsaturated polyester resin-based neat and single-walled carbon nanotube reinforced composites were comprehensively evaluated with the fractal analysis using the Fast Fourier Transform (FFT). The greyscale images, bitmap (BMP) images and 3D tomographic images were obtained by converting the scanning electron microscope images of the materials. It was observed that the distributions of components in the resin for both materials are irregular and their surfaces exhibit anisotropic behaviors. The surface coating rate (SCR) and fractal dimensionality (FD) of the materials were also calculated using the power spectrum. It has been observed that the fractal dimensionality of the composites can be changed by the doping process and the fractalization of the nanotube doped sample increases compared to the pure material due to nanotube agglomeration, spatial distribution and the orientation. The increase in fractalization as a result of this agglomeration and orientation in carbon nanotubes explains the high dielectric constant values observed at low frequencies by increasing the number and size of carbon nanotubes clusters that act as micro capacitors in certain regions of the matrix. It has been reported that the calculations for the surface coverage ratios for both samples also support these results.

References

  • M. F. Frechette, M. L. Trudeau, H. D. Alamdari, S. Boily, “Introductory remarks on nanodielectrics,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, pp. 808–818, 2004.
  • Y. Yan, Q. Cheng, G. Wang, C. Li, “Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application,” Power Sources vol. 196 pp. 7835–7840, 2011.
  • J. Zhu, H. Gu, Z. Luo, N. Haldolaarachige, D. P. Young, S. Wei, Z. Guo, “Carbon nanostructure-derived polyaniline metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties,” Langmuir, vol. 28, pp. 10246–10255, 2012.
  • V. P. Anju, P. R. Jithesh, S. K. Narayanankutty, “A novel humidity and ammonia sensor based on nanofibers/polyaniline/polyvinylalcohol,” Sensors and Actuators A, vol. 285, pp. 35–44, 2019.
  • C. R. Bowen, S. Buschhorn and V. Adamaki, “Manufacture and characterization of conductor-insulator composites based on carbon nanotubes and thermally reduced graphene oxide”, Pure Applied Chemistry, vol. 86, no.5, pp. 765–774, 2014.
  • Z. Samir, Y El Merabet, M. P. F. Graca, S. S. Teixeira, M. E. Achour and L. C. Costa, “Dielectric behaviour of carbon nanotubes particles-filled polyester polymer composites,” Journal of Composite Materials, vol. 51, no. 13, pp. 1831–1837, 2017.
  • R. Belhimria, Z. Samir, S. Boukheir, S. S. Teixeira, M. E. Achour, A. Anson-Casaos, J. M. Gonzalez-Dominguez, L. C. Costa and M. El Hasnaoui, “Thermal and dielectric properties of carbon nanotubes/graphite/polyester ternary composites,” Journal of Composite Materials, Vol. 55, no. 25, pp. 3741–3750, 2021.
  • D. Risovic, S. M. Poljacek, K. Furic, and M. Gojo, “Inferring fractal dimension of rough/porous surfaces—A comparison of SEM image analysis and electrochemical impedance spectroscopy methods,” Applied Surface Science, vol. 255, no. 5, pp. 3063-3070, 2008.
  • R. Belhimria, S. Boukheir, Z. Samir, A. Len, M. E. Achour, N. Eber, L. C. Costa, A. Oueriagli, “Fractal Approach to Alternating Current Impedance Spectroscopy Studies of Carbon Nanotubes/Epoxy Polymer Composites,” Applied Microscopy, vol. 47, no. 3, pp. 126-130, 2017.
  • J. Lira-Olivares, D. Marcano, C. Lavelle, and F. G. Sánchez, “Determination of porosity by dielectric permittivity measurements in porous ceramics,” Revista Latinoamericana de Metalurgia y Materiales, vol. 20, no. 2, pp. 68-79, 2000.
  • S. Boukheir, A. Len, J. Füzi, V. Kenderesi, M. E. Achour, N. Éber, L. C. Costa, A. Oueriagli and A. Outzourhit, “Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites,” Journal of Applied Polymer Science, vol. 134, no. 8, pp. 44514, 2016.
  • K. Yaman, “Fractal characterization of electrical conductivity and mechanical properties of copper particulate polyester matrix composites using image processing,” Polymer Bulletin, vol. 79, no. 5, pp.3309–3332, 2022.
  • A. Pander, T. Onishi, A. Hatta, H. Furuta, “Study of self-organized structure in carbon nanotube forest by fractal dimension and lacunarity analysis,” Materials Characterization, vol. 160, pp. 110086, 2020.
  • M. Zhang, W. Zhang, N. Jiang, D. N. Futaba, M. Xu, “A general strategy for optimizing composite properties by evaluating the interfacial surface area of dispersed carbon nanotubes by fractal dimension” Carbon, vol. 154, pp. 457-465, 2019.
  • A. R. Hopkins, S. J. Tomczak, V. Vij, and A. J. Jackson, “Small Angle Neutron Scattering (SANS) characterization of electrically conducting polyaniline nanofiber/polyimide nanocomposites,” Thin Solid Films, vol. 520, no. 5, pp. 1617-1620, 2011.
  • Necas, David & Klapetek, Petr. (2011). Gwyddion: An open-source software for SPM data analysis. Central European Journal of Physics
  • D. S. Bychanok, M. A. Kanygin, A. V. Okotrub, M. V. Shuba, A. G. Paddubskaya, A. O. Pliushch, P. P. Kuzhir, S. A. Maksimenko,“Anisotropy of the electromagnetic properties of polymer composites based on multiwall carbon nanotubes in the gigahertz frequency range,” Journal of Experimental and Theoretical Physics Letters, vol. 93, no. 10, pp. 607–611, 2011.
  • K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon Nanotubes as Optical Antennae,” Advanced Materials, vol. 19, no. 3, pp. 421–426, 2007.
  • P. Avouris, M. Freitag, V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nature Photonics, vol. 2 no. 6, pp. 341–350, 2008.
  • J. Jyoti, A. Kumar, S. R. Dhakate, B. P. Singh, “Dielectric and impedance properties of three dimension graphene oxide-carbon nanotube acrylonitrile butadiene styrene hybrid composites,” Polymer Testing, vol. 68, pp. 456–466, 2018.
  • L. Salome and F. Carmona, “Fractal structure study of carbon blacks used as conducting polymer fillers,” Carbon, vol. 29, no. 4-5, pp. 599-604, 1991.
  • Z. M. Dang, J. K. Yuan, J. W. Zha, T. Zhou, S. T. Li, G. H. Hu, “Fundamentals, processes and applications of high-permittivity polymer–matrix composites,” Progress in Materials Science, vol. 57, no. 4, 660–723, 2012.
Year 2023, , 1141 - 1149, 18.10.2023
https://doi.org/10.16984/saufenbilder.1250945

Abstract

References

  • M. F. Frechette, M. L. Trudeau, H. D. Alamdari, S. Boily, “Introductory remarks on nanodielectrics,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, pp. 808–818, 2004.
  • Y. Yan, Q. Cheng, G. Wang, C. Li, “Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application,” Power Sources vol. 196 pp. 7835–7840, 2011.
  • J. Zhu, H. Gu, Z. Luo, N. Haldolaarachige, D. P. Young, S. Wei, Z. Guo, “Carbon nanostructure-derived polyaniline metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties,” Langmuir, vol. 28, pp. 10246–10255, 2012.
  • V. P. Anju, P. R. Jithesh, S. K. Narayanankutty, “A novel humidity and ammonia sensor based on nanofibers/polyaniline/polyvinylalcohol,” Sensors and Actuators A, vol. 285, pp. 35–44, 2019.
  • C. R. Bowen, S. Buschhorn and V. Adamaki, “Manufacture and characterization of conductor-insulator composites based on carbon nanotubes and thermally reduced graphene oxide”, Pure Applied Chemistry, vol. 86, no.5, pp. 765–774, 2014.
  • Z. Samir, Y El Merabet, M. P. F. Graca, S. S. Teixeira, M. E. Achour and L. C. Costa, “Dielectric behaviour of carbon nanotubes particles-filled polyester polymer composites,” Journal of Composite Materials, vol. 51, no. 13, pp. 1831–1837, 2017.
  • R. Belhimria, Z. Samir, S. Boukheir, S. S. Teixeira, M. E. Achour, A. Anson-Casaos, J. M. Gonzalez-Dominguez, L. C. Costa and M. El Hasnaoui, “Thermal and dielectric properties of carbon nanotubes/graphite/polyester ternary composites,” Journal of Composite Materials, Vol. 55, no. 25, pp. 3741–3750, 2021.
  • D. Risovic, S. M. Poljacek, K. Furic, and M. Gojo, “Inferring fractal dimension of rough/porous surfaces—A comparison of SEM image analysis and electrochemical impedance spectroscopy methods,” Applied Surface Science, vol. 255, no. 5, pp. 3063-3070, 2008.
  • R. Belhimria, S. Boukheir, Z. Samir, A. Len, M. E. Achour, N. Eber, L. C. Costa, A. Oueriagli, “Fractal Approach to Alternating Current Impedance Spectroscopy Studies of Carbon Nanotubes/Epoxy Polymer Composites,” Applied Microscopy, vol. 47, no. 3, pp. 126-130, 2017.
  • J. Lira-Olivares, D. Marcano, C. Lavelle, and F. G. Sánchez, “Determination of porosity by dielectric permittivity measurements in porous ceramics,” Revista Latinoamericana de Metalurgia y Materiales, vol. 20, no. 2, pp. 68-79, 2000.
  • S. Boukheir, A. Len, J. Füzi, V. Kenderesi, M. E. Achour, N. Éber, L. C. Costa, A. Oueriagli and A. Outzourhit, “Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites,” Journal of Applied Polymer Science, vol. 134, no. 8, pp. 44514, 2016.
  • K. Yaman, “Fractal characterization of electrical conductivity and mechanical properties of copper particulate polyester matrix composites using image processing,” Polymer Bulletin, vol. 79, no. 5, pp.3309–3332, 2022.
  • A. Pander, T. Onishi, A. Hatta, H. Furuta, “Study of self-organized structure in carbon nanotube forest by fractal dimension and lacunarity analysis,” Materials Characterization, vol. 160, pp. 110086, 2020.
  • M. Zhang, W. Zhang, N. Jiang, D. N. Futaba, M. Xu, “A general strategy for optimizing composite properties by evaluating the interfacial surface area of dispersed carbon nanotubes by fractal dimension” Carbon, vol. 154, pp. 457-465, 2019.
  • A. R. Hopkins, S. J. Tomczak, V. Vij, and A. J. Jackson, “Small Angle Neutron Scattering (SANS) characterization of electrically conducting polyaniline nanofiber/polyimide nanocomposites,” Thin Solid Films, vol. 520, no. 5, pp. 1617-1620, 2011.
  • Necas, David & Klapetek, Petr. (2011). Gwyddion: An open-source software for SPM data analysis. Central European Journal of Physics
  • D. S. Bychanok, M. A. Kanygin, A. V. Okotrub, M. V. Shuba, A. G. Paddubskaya, A. O. Pliushch, P. P. Kuzhir, S. A. Maksimenko,“Anisotropy of the electromagnetic properties of polymer composites based on multiwall carbon nanotubes in the gigahertz frequency range,” Journal of Experimental and Theoretical Physics Letters, vol. 93, no. 10, pp. 607–611, 2011.
  • K. Kempa, J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, Z. F. Ren, “Carbon Nanotubes as Optical Antennae,” Advanced Materials, vol. 19, no. 3, pp. 421–426, 2007.
  • P. Avouris, M. Freitag, V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nature Photonics, vol. 2 no. 6, pp. 341–350, 2008.
  • J. Jyoti, A. Kumar, S. R. Dhakate, B. P. Singh, “Dielectric and impedance properties of three dimension graphene oxide-carbon nanotube acrylonitrile butadiene styrene hybrid composites,” Polymer Testing, vol. 68, pp. 456–466, 2018.
  • L. Salome and F. Carmona, “Fractal structure study of carbon blacks used as conducting polymer fillers,” Carbon, vol. 29, no. 4-5, pp. 599-604, 1991.
  • Z. M. Dang, J. K. Yuan, J. W. Zha, T. Zhou, S. T. Li, G. H. Hu, “Fundamentals, processes and applications of high-permittivity polymer–matrix composites,” Progress in Materials Science, vol. 57, no. 4, 660–723, 2012.
There are 22 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Articles
Authors

Aykut Ilgaz 0000-0002-9632-0281

Mehmet Bayırlı 0000-0002-7775-0251

Early Pub Date October 5, 2023
Publication Date October 18, 2023
Submission Date February 14, 2023
Acceptance Date October 3, 2023
Published in Issue Year 2023

Cite

APA Ilgaz, A., & Bayırlı, M. (2023). Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites. Sakarya University Journal of Science, 27(5), 1141-1149. https://doi.org/10.16984/saufenbilder.1250945
AMA Ilgaz A, Bayırlı M. Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites. SAUJS. October 2023;27(5):1141-1149. doi:10.16984/saufenbilder.1250945
Chicago Ilgaz, Aykut, and Mehmet Bayırlı. “Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites”. Sakarya University Journal of Science 27, no. 5 (October 2023): 1141-49. https://doi.org/10.16984/saufenbilder.1250945.
EndNote Ilgaz A, Bayırlı M (October 1, 2023) Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites. Sakarya University Journal of Science 27 5 1141–1149.
IEEE A. Ilgaz and M. Bayırlı, “Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites”, SAUJS, vol. 27, no. 5, pp. 1141–1149, 2023, doi: 10.16984/saufenbilder.1250945.
ISNAD Ilgaz, Aykut - Bayırlı, Mehmet. “Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites”. Sakarya University Journal of Science 27/5 (October 2023), 1141-1149. https://doi.org/10.16984/saufenbilder.1250945.
JAMA Ilgaz A, Bayırlı M. Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites. SAUJS. 2023;27:1141–1149.
MLA Ilgaz, Aykut and Mehmet Bayırlı. “Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites”. Sakarya University Journal of Science, vol. 27, no. 5, 2023, pp. 1141-9, doi:10.16984/saufenbilder.1250945.
Vancouver Ilgaz A, Bayırlı M. Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites. SAUJS. 2023;27(5):1141-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.