Research Article
BibTex RIS Cite

Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx

Year 2023, , 1276 - 1285, 18.12.2023
https://doi.org/10.16984/saufenbilder.1270814

Abstract

Perovskites are organic-inorganic compounds with a crystal structure that revolutionize many optoelectronic applications, especially solar cells. The CsPbBr3−xIx, a perovskite, has garnered significant attention due to its tunable band gap and excellent photovoltaic properties. In this theoretical study, the structural, electronic, and optical properties of CsPbBr3−xIx are investigated through density functional theory calculations. The calculations reveal that the substitution of Br with I leads to a significant reduction in the band gap of CsPbBr3−xIx, resulting in improved light absorption properties. The obtained data show that the coexistence of Br and I ions in the structure creates an energy level similar to the shallow energy levels caused by doping at the R symmetry point in the band structure.

References

  • [1] Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan, J. Shi, Y. Zhao, “The role of dimethylammonium iodide in cspbi3 perovskite fabrication: Additive or dopant?,” Angewandte Chemie International Edition, vol. 58, no. 46, pp. 16691-16696, 2019.
  • [2] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Advanced Materials, vol. 28, no. 32, pp. 6804-6834, 2016.
  • [3] W. Xiang W. Tress, “Review on recent progress of all-inorganic metal halide perovskites and solar cells,” Advanced Materials, vol. 31, no. 44, pp. 1902851, 2019.
  • [4] G. E. Eperon, C. E. Beck, H. J. Snaith, “Cation exchange for thin film lead iodide perovskite interconversion,” Materials Horizons, vol. 3, pp. 63-71, 2016.
  • [5] F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D. M. Evans, M. A. Carpenter, P. D. Bristowe, A. K. Cheetham, “The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskite (MA)2KBiCl6 (MA = methylammonium),” Materials Horizons, vol. 3, pp. 328-332, 2016.
  • [6] NREL, “National renewable energy laboratory (nrel), best research-cell efficiency chart,” 2023.
  • [7] J. Liang, J. Liu, Z. Jin, “All-inorganic halide perovskites for optoelectronics: Progress and prospects,” Solar RRL, vol. 1, no. 10, pp. 1700086, 2017.
  • [8] Y. Wang H. Sun, “All-inorganic metal halide perovskite nanostructures: From photophysics to light-emitting applications,” Small Methods, vol. 2, no. 1, pp. 1700252, 2018.
  • [9] Y. Zhao, I. Yavuz, M. Wang, M. H. Weber, M. Xu, J.-H. Lee, S. Tan, T. Huang, D. Meng, R. Wang, J. Xue, S.-J. Lee, S.-H. Bae, A. Zhang, S.-G. Choi, Y. Yin,J. Liu, T.-H. Han, Y. Shi, H. Ma, W. Yang, Q. Xing, Y. Zhou, P. Shi, S. Wang, E. Zhang, J. Bian, X. Pan, N.-G. Park, J.-W. Lee, Y. Yang, “Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations,” Nature Materials, vol. 21, pp. 1396-1402, Dec 2022.
  • [10] N. Isleyen, A. Corcor, S. Cakirefe, N. Ormanli, E. N. Kanat, I. Yavuz, “Accelerated discovery of defect tolerant organo-halide perovskites,” Journal of Materials Chemistry C, vol. 10, pp. 18385-18392, 2022.
  • [11] J. Kruszyńska, F. Sadegh, M. J. Patel, E. Akman, P. Yadav, M. M. Tavakoli, S. K. Gupta, P. N. Gajjar, S. Akin, D. Prochowicz, “Effect of 1,3- disubstituted urea derivatives as additives on the efficiency and stability of perovskite solar cells,” ACS Applied Energy Materials, vol. 5, pp. 13617- 13626, 2022.
  • [12] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, H. G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Advanced Energy Materials, vol. 5, no. 15, pp. 1500477, 2015.
  • [13] J. K. Nam, S. U. Chai, W. Cha, Y. J. Choi, W. Kim, M. S. Jung, J. Kwon, D. Kim, J. H. Park, “Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells,” Nano Letters, vol. 17, pp. 2028-2033, Mar 2017.
  • [14] Z. Yao, Z. Jin, X. Zhang, Q. Wang, H. Zhang, Z. Xu, L. Ding, S. F. Liu, “Pseudohalide (SCN- )-doped CsPbI3 for high-performance solar cells,” Journal of Materials Chemistry C, vol. 7, pp. 13736-13742, 2019.
  • [15] Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan, F. Yan, “Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity,” Nature Communications, vol. 7, p. 11105, Apr 2016.
  • [16] Z. Xiao, W. Meng, B. Saparov, H.-S. Duan, C. Wang, C. Feng, W. Liao, W. Ke, D. Zhao, J. Wang, D. B. Mitzi, Y. Yan, “Photovoltaic properties of twodimensional (CH3NH3)2Pb(SCN)2I2 perovskite: A combined experimental and density functional theory study,” The Journal of Physical Chemistry Letters, vol. 7, pp. 1213-1218, Apr 2016.
  • [17] G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” Journal of Materials Chemistry A, vol. 2, pp. 705-710, 2014.
  • [18] T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, “Bication lead iodide 2d perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Science Advances, vol. 3, no. 9, pp. e1700841, 2017.
  • [19] N. Li, Z. Zhu, J. Li, A. K.-Y. Jen, L. Wang, “Inorganic CsPb1-xSnxIBr2 for efficient wide-band gap perovskite solar cells,” Advanced Energy Materials, vol. 8, no. 22, pp. 1800525, 2018.
  • [20] S. Dastidar, S. Li, S. Y. Smolin, J. B. Baxter, A. T. Fafarman, “Slow electronhole recombination in lead iodide perovskites does not require a molecular dipole,” ACS Energy Letters, vol. 2, pp. 2239-2244, Oct 2017.
  • [21] Q. Jing, M. Zhang, X. Huang, X. Ren, P. Wang, Z. Lu, “Surface passivation of mixed-halide perovskite CsPb(BrxI1-x)3 nanocrystals by selective etching for improved stability,” Nanoscale, vol. 9, pp. 7391-7396, 2017.
  • [22] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut”, Nano Letters, vol. 15 (6), 3692-3696, 2015.
  • [23] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy & Environmental Science, vol. 7, pp. 982-988, 2014.
  • [24] K. Chen, Q. Zhong, W. Chen, B. Sang, Y. Wang, T. Yang, Y. Liu, Y. Zhang, H. Zhang, “Short-chain ligand-passivated stable CsPbI3 quantum dot for allinorganic perovskite solar cells,” Advanced Functional Materials, vol. 29, no. 24, pp. 1900991, 2019.
  • [25] Goldschmidt, V.M., “Die Gesetze der Krystallochemie,” Naturwissenschaften, 14, 477-485, 1926.
  • [26] S. Mariotti, O. S. Hutter, L. J. Phillips, P. J. Yates, B. Kundu, K. Durose, “Stability and performance of CsPbI2Br thin films and solar cell devices,” ACS Applied Materials & Interfaces, vol. 10, pp. 3750-3760, Jan 2018.
  • [27] E. Akman, T. Ozturk, W. Xiang, F. Sadegh, D. Prochowicz, M. M. Tavakoli, P. Yadav, M. Yilmaz, S. Akin, “The effect of B-site doping in all-inorganic CsPbIxBr3−x absorbers on the performance and stability of perovskite photovoltaics,” Energy & Environmental Science., vol. 16, pp. 372-403, 2023.
  • [28] T. Ozturk, E. Akman, A. E. Shalan, S. Akin, “Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%,” Nano Energy, Volume 87, pp. 106157, 2021.
  • [29] Z. Lin, J. Lei, P. Wang, X. Zhang, L. Xu, M. Chen, Y. Kang, G. Wei, “Density functional study of structural, electronic and optical properties of bromine-doped CsPbI3 with the tetragonal symmetry,” Journal of Alloys and Compounds, pp. 162165, vol 892, 2022.
  • [30] P. M. Maleka, R. S. Dima, O. M. Ntwaeaborwa, R. R. Maphanga, “Density functional theory study of Br doped CsPbI3 perovskite for photovoltaic and optoelectronic applications,” Physica Scripta, vol. 98, no. 4, pp. 045505, 2023.
  • [31] Guan Z, Wu Y, Wang P, Zhang Q, Wang Z, Zheng Z, Liu Y, Dai Y, Whangbo M-H, Huang B. “Perovskite photocatalyst CsPbBr3-xIx with a bandgap funnel structure for H2 evolution under visible light,” Applied Catalysis B: Environmental, vol. 245, pp. 522-527, 2019.
  • [32] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. Payne, “First principles methods using CASTEP,” Z. Kristall., vol. 220, pp. 567-570, 2005.
  • [33] E. McNellis, J. Meyer, K. Reuter, “Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions,” Physical Review B, vol. 80, pp. 205414, 2009.
  • [34] A. Tkatchenko M. Scheffler, “Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data,” Physical Review Letters, vol. 102, pp. 073005, 2009.
  • [35] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, pp. 3865-3868, 1996.
  • [36] H. J. Monkhorst J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, pp. 5188- 5192, 1976.
  • [37] W. Tang, E. Sanville, G. Henkelman, “A grid-based bader analysis algorithm without lattice bias,” Journal of Physics: Condensed Matter, vol. 21, pp. 084204, jan 2009.
  • [38] M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, I. Ahmad, “Structural, electronic and optical properties of cspbx3 (x=cl, br, i) for energy storage and hybrid solar cell applications,” Journal of Alloys and Compounds, vol. 705, pp. 828–839, 2017.
  • [39] P. Cottingham R. L. Brutchey, “On the crystal structure of colloidally prepared cspbbr3 quantum dots,” Chemical Communications, vol. 52, pp. 5246- 5249, 2016.
  • [40] D. Trots S. Myagkota, “Hightemperature structural evolution of caesium and rubidium triiodoplumbates,” Journal of Physics and Chemistry of Solids, vol. 69, no. 10, pp. 2520–2526, 2008.
  • [41] K. Heidrich, W. Schäfer, M. Schreiber, J. Söchtig, G. Trendel, J. Treusch, T. Grandke, H. J. Stolz, “Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPbCl3 and CsPbBr3,” Physical Review B, vol. 24, pp. 5642-5649, Nov 1981.
  • [42] Y. Yang, C. Hou, T.-X. Liang, “Energetic and electronic properties of cspbbr3 surfaces: a first-principles study,” Physical Chemistry Chemical Physics, vol. 23, pp. 7145-7152, 2021.
  • [43] H. M. Ghaithan, Z. A. Alahmed, S. M. H. Qaid, and A. S. Aldwayyan, “Structural, electronic, optical properties of CsPb(Br1-xClx)3 perovskite: First-principles study with PBE-GGA and mbj-GGA methods,” Materials, vol. 13, no. 21, 2020.
  • [44] Maji, P., Sadhukhan, P. Das, S. “Optoelectronic properties of facile synthesized orthorhombic cesium lead bromide (CsPbBr3),” Journal of Materials Science: Materials in Electronics, 31(19), pp. 17100-17109, 2020.
  • [45] M. R. Filip, G. E. Eperon, H. J. Snaith, F. Giustino, “Steric engineering of metal-halide perovskites with tunable optical band gaps,” Nature Communications, vol. 5, pp. 5757, Dec 2014. [46] C. H. Ng, T. S. Ripolles, K. Hamada, S. H. Teo, H. N. Lim, J. Bisquert, S. Hayase, “Tunable open circuit voltage by engineering inorganic cesium lead bromide/iodide perovskite solar cells,” Scientific Reports, vol. 8, pp. 2482, Feb 2018.
Year 2023, , 1276 - 1285, 18.12.2023
https://doi.org/10.16984/saufenbilder.1270814

Abstract

References

  • [1] Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan, J. Shi, Y. Zhao, “The role of dimethylammonium iodide in cspbi3 perovskite fabrication: Additive or dopant?,” Angewandte Chemie International Edition, vol. 58, no. 46, pp. 16691-16696, 2019.
  • [2] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar, “Perovskite materials for light-emitting diodes and lasers,” Advanced Materials, vol. 28, no. 32, pp. 6804-6834, 2016.
  • [3] W. Xiang W. Tress, “Review on recent progress of all-inorganic metal halide perovskites and solar cells,” Advanced Materials, vol. 31, no. 44, pp. 1902851, 2019.
  • [4] G. E. Eperon, C. E. Beck, H. J. Snaith, “Cation exchange for thin film lead iodide perovskite interconversion,” Materials Horizons, vol. 3, pp. 63-71, 2016.
  • [5] F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D. M. Evans, M. A. Carpenter, P. D. Bristowe, A. K. Cheetham, “The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskite (MA)2KBiCl6 (MA = methylammonium),” Materials Horizons, vol. 3, pp. 328-332, 2016.
  • [6] NREL, “National renewable energy laboratory (nrel), best research-cell efficiency chart,” 2023.
  • [7] J. Liang, J. Liu, Z. Jin, “All-inorganic halide perovskites for optoelectronics: Progress and prospects,” Solar RRL, vol. 1, no. 10, pp. 1700086, 2017.
  • [8] Y. Wang H. Sun, “All-inorganic metal halide perovskite nanostructures: From photophysics to light-emitting applications,” Small Methods, vol. 2, no. 1, pp. 1700252, 2018.
  • [9] Y. Zhao, I. Yavuz, M. Wang, M. H. Weber, M. Xu, J.-H. Lee, S. Tan, T. Huang, D. Meng, R. Wang, J. Xue, S.-J. Lee, S.-H. Bae, A. Zhang, S.-G. Choi, Y. Yin,J. Liu, T.-H. Han, Y. Shi, H. Ma, W. Yang, Q. Xing, Y. Zhou, P. Shi, S. Wang, E. Zhang, J. Bian, X. Pan, N.-G. Park, J.-W. Lee, Y. Yang, “Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations,” Nature Materials, vol. 21, pp. 1396-1402, Dec 2022.
  • [10] N. Isleyen, A. Corcor, S. Cakirefe, N. Ormanli, E. N. Kanat, I. Yavuz, “Accelerated discovery of defect tolerant organo-halide perovskites,” Journal of Materials Chemistry C, vol. 10, pp. 18385-18392, 2022.
  • [11] J. Kruszyńska, F. Sadegh, M. J. Patel, E. Akman, P. Yadav, M. M. Tavakoli, S. K. Gupta, P. N. Gajjar, S. Akin, D. Prochowicz, “Effect of 1,3- disubstituted urea derivatives as additives on the efficiency and stability of perovskite solar cells,” ACS Applied Energy Materials, vol. 5, pp. 13617- 13626, 2022.
  • [12] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, H. G. Boyen, “Intrinsic thermal instability of methylammonium lead trihalide perovskite,” Advanced Energy Materials, vol. 5, no. 15, pp. 1500477, 2015.
  • [13] J. K. Nam, S. U. Chai, W. Cha, Y. J. Choi, W. Kim, M. S. Jung, J. Kwon, D. Kim, J. H. Park, “Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells,” Nano Letters, vol. 17, pp. 2028-2033, Mar 2017.
  • [14] Z. Yao, Z. Jin, X. Zhang, Q. Wang, H. Zhang, Z. Xu, L. Ding, S. F. Liu, “Pseudohalide (SCN- )-doped CsPbI3 for high-performance solar cells,” Journal of Materials Chemistry C, vol. 7, pp. 13736-13742, 2019.
  • [15] Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan, F. Yan, “Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity,” Nature Communications, vol. 7, p. 11105, Apr 2016.
  • [16] Z. Xiao, W. Meng, B. Saparov, H.-S. Duan, C. Wang, C. Feng, W. Liao, W. Ke, D. Zhao, J. Wang, D. B. Mitzi, Y. Yan, “Photovoltaic properties of twodimensional (CH3NH3)2Pb(SCN)2I2 perovskite: A combined experimental and density functional theory study,” The Journal of Physical Chemistry Letters, vol. 7, pp. 1213-1218, Apr 2016.
  • [17] G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells,” Journal of Materials Chemistry A, vol. 2, pp. 705-710, 2014.
  • [18] T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, “Bication lead iodide 2d perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells,” Science Advances, vol. 3, no. 9, pp. e1700841, 2017.
  • [19] N. Li, Z. Zhu, J. Li, A. K.-Y. Jen, L. Wang, “Inorganic CsPb1-xSnxIBr2 for efficient wide-band gap perovskite solar cells,” Advanced Energy Materials, vol. 8, no. 22, pp. 1800525, 2018.
  • [20] S. Dastidar, S. Li, S. Y. Smolin, J. B. Baxter, A. T. Fafarman, “Slow electronhole recombination in lead iodide perovskites does not require a molecular dipole,” ACS Energy Letters, vol. 2, pp. 2239-2244, Oct 2017.
  • [21] Q. Jing, M. Zhang, X. Huang, X. Ren, P. Wang, Z. Lu, “Surface passivation of mixed-halide perovskite CsPb(BrxI1-x)3 nanocrystals by selective etching for improved stability,” Nanoscale, vol. 9, pp. 7391-7396, 2017.
  • [22] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, “Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut”, Nano Letters, vol. 15 (6), 3692-3696, 2015.
  • [23] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy & Environmental Science, vol. 7, pp. 982-988, 2014.
  • [24] K. Chen, Q. Zhong, W. Chen, B. Sang, Y. Wang, T. Yang, Y. Liu, Y. Zhang, H. Zhang, “Short-chain ligand-passivated stable CsPbI3 quantum dot for allinorganic perovskite solar cells,” Advanced Functional Materials, vol. 29, no. 24, pp. 1900991, 2019.
  • [25] Goldschmidt, V.M., “Die Gesetze der Krystallochemie,” Naturwissenschaften, 14, 477-485, 1926.
  • [26] S. Mariotti, O. S. Hutter, L. J. Phillips, P. J. Yates, B. Kundu, K. Durose, “Stability and performance of CsPbI2Br thin films and solar cell devices,” ACS Applied Materials & Interfaces, vol. 10, pp. 3750-3760, Jan 2018.
  • [27] E. Akman, T. Ozturk, W. Xiang, F. Sadegh, D. Prochowicz, M. M. Tavakoli, P. Yadav, M. Yilmaz, S. Akin, “The effect of B-site doping in all-inorganic CsPbIxBr3−x absorbers on the performance and stability of perovskite photovoltaics,” Energy & Environmental Science., vol. 16, pp. 372-403, 2023.
  • [28] T. Ozturk, E. Akman, A. E. Shalan, S. Akin, “Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%,” Nano Energy, Volume 87, pp. 106157, 2021.
  • [29] Z. Lin, J. Lei, P. Wang, X. Zhang, L. Xu, M. Chen, Y. Kang, G. Wei, “Density functional study of structural, electronic and optical properties of bromine-doped CsPbI3 with the tetragonal symmetry,” Journal of Alloys and Compounds, pp. 162165, vol 892, 2022.
  • [30] P. M. Maleka, R. S. Dima, O. M. Ntwaeaborwa, R. R. Maphanga, “Density functional theory study of Br doped CsPbI3 perovskite for photovoltaic and optoelectronic applications,” Physica Scripta, vol. 98, no. 4, pp. 045505, 2023.
  • [31] Guan Z, Wu Y, Wang P, Zhang Q, Wang Z, Zheng Z, Liu Y, Dai Y, Whangbo M-H, Huang B. “Perovskite photocatalyst CsPbBr3-xIx with a bandgap funnel structure for H2 evolution under visible light,” Applied Catalysis B: Environmental, vol. 245, pp. 522-527, 2019.
  • [32] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. Payne, “First principles methods using CASTEP,” Z. Kristall., vol. 220, pp. 567-570, 2005.
  • [33] E. McNellis, J. Meyer, K. Reuter, “Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions,” Physical Review B, vol. 80, pp. 205414, 2009.
  • [34] A. Tkatchenko M. Scheffler, “Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data,” Physical Review Letters, vol. 102, pp. 073005, 2009.
  • [35] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, pp. 3865-3868, 1996.
  • [36] H. J. Monkhorst J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, pp. 5188- 5192, 1976.
  • [37] W. Tang, E. Sanville, G. Henkelman, “A grid-based bader analysis algorithm without lattice bias,” Journal of Physics: Condensed Matter, vol. 21, pp. 084204, jan 2009.
  • [38] M. Ahmad, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, I. Ahmad, “Structural, electronic and optical properties of cspbx3 (x=cl, br, i) for energy storage and hybrid solar cell applications,” Journal of Alloys and Compounds, vol. 705, pp. 828–839, 2017.
  • [39] P. Cottingham R. L. Brutchey, “On the crystal structure of colloidally prepared cspbbr3 quantum dots,” Chemical Communications, vol. 52, pp. 5246- 5249, 2016.
  • [40] D. Trots S. Myagkota, “Hightemperature structural evolution of caesium and rubidium triiodoplumbates,” Journal of Physics and Chemistry of Solids, vol. 69, no. 10, pp. 2520–2526, 2008.
  • [41] K. Heidrich, W. Schäfer, M. Schreiber, J. Söchtig, G. Trendel, J. Treusch, T. Grandke, H. J. Stolz, “Electronic structure, photoemission spectra, and vacuum-ultraviolet optical spectra of CsPbCl3 and CsPbBr3,” Physical Review B, vol. 24, pp. 5642-5649, Nov 1981.
  • [42] Y. Yang, C. Hou, T.-X. Liang, “Energetic and electronic properties of cspbbr3 surfaces: a first-principles study,” Physical Chemistry Chemical Physics, vol. 23, pp. 7145-7152, 2021.
  • [43] H. M. Ghaithan, Z. A. Alahmed, S. M. H. Qaid, and A. S. Aldwayyan, “Structural, electronic, optical properties of CsPb(Br1-xClx)3 perovskite: First-principles study with PBE-GGA and mbj-GGA methods,” Materials, vol. 13, no. 21, 2020.
  • [44] Maji, P., Sadhukhan, P. Das, S. “Optoelectronic properties of facile synthesized orthorhombic cesium lead bromide (CsPbBr3),” Journal of Materials Science: Materials in Electronics, 31(19), pp. 17100-17109, 2020.
  • [45] M. R. Filip, G. E. Eperon, H. J. Snaith, F. Giustino, “Steric engineering of metal-halide perovskites with tunable optical band gaps,” Nature Communications, vol. 5, pp. 5757, Dec 2014. [46] C. H. Ng, T. S. Ripolles, K. Hamada, S. H. Teo, H. N. Lim, J. Bisquert, S. Hayase, “Tunable open circuit voltage by engineering inorganic cesium lead bromide/iodide perovskite solar cells,” Scientific Reports, vol. 8, pp. 2482, Feb 2018.
There are 45 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Veysel Çelik 0000-0001-5020-8422

Early Pub Date December 1, 2023
Publication Date December 18, 2023
Submission Date March 26, 2023
Acceptance Date August 31, 2023
Published in Issue Year 2023

Cite

APA Çelik, V. (2023). Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx. Sakarya University Journal of Science, 27(6), 1276-1285. https://doi.org/10.16984/saufenbilder.1270814
AMA Çelik V. Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx. SAUJS. December 2023;27(6):1276-1285. doi:10.16984/saufenbilder.1270814
Chicago Çelik, Veysel. “Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx”. Sakarya University Journal of Science 27, no. 6 (December 2023): 1276-85. https://doi.org/10.16984/saufenbilder.1270814.
EndNote Çelik V (December 1, 2023) Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx. Sakarya University Journal of Science 27 6 1276–1285.
IEEE V. Çelik, “Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx”, SAUJS, vol. 27, no. 6, pp. 1276–1285, 2023, doi: 10.16984/saufenbilder.1270814.
ISNAD Çelik, Veysel. “Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx”. Sakarya University Journal of Science 27/6 (December 2023), 1276-1285. https://doi.org/10.16984/saufenbilder.1270814.
JAMA Çelik V. Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx. SAUJS. 2023;27:1276–1285.
MLA Çelik, Veysel. “Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx”. Sakarya University Journal of Science, vol. 27, no. 6, 2023, pp. 1276-85, doi:10.16984/saufenbilder.1270814.
Vancouver Çelik V. Mechanism of Tunable Band Gap of Halide Cubic Perovskite CsPbBr3−xIx. SAUJS. 2023;27(6):1276-85.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.