Research Article
BibTex RIS Cite
Year 2023, , 1337 - 1344, 18.12.2023
https://doi.org/10.16984/saufenbilder.1340863

Abstract

References

  • [1] L. Zhang, X. L. Shi, Y. L. Yang, Z. G. Chen, “Flexible thermoelectric materials and devices: From materials to applications,” Materials Today, vol. 46 pp. 62-108, 2021.
  • [2] S. Xu, X. L. Shi, M. Dargusch, C. Di, J. Zou, Z. G. Chen, “Conducting polymerbased flexible thermoelectric materials and devices: From mechanisms to applications,” Progress in Materials Science, vol. 121, pp. 100840, 2021.
  • [3] N. Nandihalli, C. J. Liu, T. Mori, “Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics,” Nano Energy, vol. 78, pp. 105186, 2020.
  • [4] D. Park, M. Kim, J. Kim “Fabrication of PEDOT: PSS/Ag2Se nanowires for polymer-based thermoelectric applications,” Polymers, vol. 12, no.12, pp. 2932, 2020.
  • [5] H. Ju, D. Park, J. Kim, “Conductive polymer based high-performance hybrid thermoelectrics: Polyaniline/tin (II) sulfide nanosheet composites,” Polymer vol. 160, pp. 24-29, 2019.
  • [6] Y. Wang, L. Yang, X. L. Shi, X. Shi, L. Chen, M.S. Dargusch, J. Zou, Z. G. Chen, “Flexible thermoelectric materials and generators: challenges and innovations,” Advanced Materials, vol. 31, no. 29, pp. 1807916, 2019.
  • [7] Z. Fan, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang, “Recent developments in flexible thermoelectrics: From materials to devices,” Renewable and Sustainable Energy Reviews, vol. 137, pp. 110448, 2021.
  • [8] D. Ni, H. Song, Y. Chen, K. Cai, “Freestanding highly conducting PEDOT films for flexible thermoelectric generator,” Energy, vol. 170, pp. 53-61 2019.
  • [9] H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun, J. Ouyang, “Recent development of thermoelectric polymers and composites,” Macromolecular Rapid Communications, vol. 39, no. 6, pp. 1700727, 2018.
  • [10] Y. Yang, H. Deng, Q. Fu, “Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices,” Materials Chemistry Frontiers, vol. 4, no. 11, pp. 3130-3152, 2020.
  • [11] A. F. Al Naim, A. G. El-Shamy, “Review on recent development on thermoelectric functions of PEDOT: PSS based systems,” Materials Science in Semiconductor Processing, vol. 152, pp. 107041, 2022.
  • [12] J. Yang, Y. Jia, Y. Liu, P. Liu, Y. Wang, M. Li, F. Jiang, X. Lan, J. Xu, “PEDOT: PSS/PVA/Te ternary composite fibers toward flexible thermoelectric generator,” Composites Communications, vol. 27, pp. 100855, 2021.
  • [13] Y. Du, J. Chen, J. Qin, Q. Meng, S. Z. Shen, “Flexible PVA/PEDOT: PSS thermoelectric nanocomposite films prepared via an additive manufacturing process,” Composites Communications, vol. 35, pp. 101312, 2022.
  • [14] X. Jiang, C. Ban, L. Li, J. Hao, N. Shi, W. Chen, P. Gao, “Electrospinning of BCNNTs/PVA/PEDOT composite nanofibers films for research thermoelectric performance,” Journal of Applied Polymer Science, vol. 139, no. 17, pp. 52049, 2022.
  • [15] A. F. Al Naim, S. S. Ibrahim, A. gamal El-Shamy, “New high mechanically flexible and bendable nanocomposite Ag@ NCDots/PEDOT: PSS/PVA films with high thermoelectric power performance and generator,” Polymer, vol. 226, pp. 123792, 2021.
  • [16] S. Jin, T. Sun, Y. Fan, L. Wang, M. Zhu, J. Yang, W. Jiang, “Synthesis of freestanding PEDOT:PSS/PVA@ Ag NPs nanofiber film for highperformance flexible thermoelectric generator,” Polymer, vol. 167, pp. 102- 108, 2019.
  • [17] C. E. Ozturk, V. Ugraskan, O. Yazici, “Thermoelectric Properties of Titanium Carbide Filled Polypyrrole Hybrid Composites,” Journal of Electronic Materials, vol. 51, no. 9, pp. 5246- 5252, 2022.
  • [18] S. Mahendia, A. K. Tomar, R. P. Chahal, P. Goyal, S. Kumar, “Optical and structural properties of poly (vinyl alcohol) films embedded with citratestabilized gold nanoparticles,” Journal of Physics D: Applied Physics, vol. 44, no.20, pp. 205105, 2011.
  • [19] N. Romyen, S. Thongyai, P. Praserthdam, G. A. Sotzing, “Enhancement of poly (3, 4- ethylenedioxy thiophene)/poly (styrene sulfonate) properties by poly (vinyl alcohol) and doping agent as conductive nano-thin film for electronic application,” Journal of Materials Science: Materials in Electronics, vol. 24, pp. 2897-2905, 2013.
  • [20] X. Wang, G. Y. Feng, M. Q. Ge, “Influence of ethylene glycol vapor annealing on structure and property of wet-spun PVA/PEDOT: PSS blend fiber,” Journal of Materials Science, vol. 52, pp. 6917-6927, 2017.
  • [21] X. Wang, M. Li, G. Feng, M. Ge, “On the mechanism of conductivity enhancement in PEDOT: PSS/PVA blend fiber induced by UV-light irradiation,” Applied Physics A, vol. 126, pp. 1-7, 2020.
  • [22] H. Zhang, X. Zhong, J. J. Xu, H. Y. Chen, “Fe3O4/polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties,” Langmuir, vol. 24, no.23, pp. 13748- 13752, 2008.
  • [23] F. Zhang, Y. Shi, Z. Zhao, W. Song, Y. Cheng, “Influence of semiconductor/insulator/semiconducto r structure on the photo-catalytic activity of Fe3O4/SiO2/polythiophene core/shell submicron composite,” Applied Catalysis B: Environmental, vol. 150, pp. 472-478, 2014.
  • [24] E. Salim, A. E. Tarabiah, “The Influence of NiO Nanoparticles on Structural, Optical and Dielectric Properties of CMC/PVA/PEDOT: PSS Nanocomposites,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 33, pp. 1638–1645, 2023.
  • [25] T. A. Yemata, Y. Zheng, A. K. K. Kyaw, X. Wang, J. Song, W. S. Chin, J. Xu, “Modulation of the doping level of PEDOT: PSS film by treatment with hydrazine to improve the Seebeck coefficient,” RSC Advances, vol. 10, no.3, pp. 1786-1792, 2020.
  • [26] H. Song, K. Cai, S. Shen, “Enhanced thermoelectric properties of PEDOT/PSS/Te composite films treated with H2SO4,” Journal of Nanoparticle Research, vol.18, pp. 1-9, 2016.
  • [27] E. Jin Bae, Y. Hun Kang, K. S. Jang, S. Yun Cho, “Enhancement of thermoelectric properties of PEDOT: PSS and tellurium-PEDOT: PSS hybrid composites by simple chemical treatment,” Scientific reports, vol. 6, no. 1, pp. 18805, 2016.
  • [28] F.P. Du, N. N. Cao, Y.F. Zhang, P. Fu, Y. G. Wu, Z. D. Lin, R. Shi, A. Amini, C. Cheng, “PEDOT: PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation,” Scientific reports, vol. 8, no. 1, pp. 6441, 2018.

Thermoelectric Properties of Flexible Polyvinyl Alcohol/Poly (3,4- Ethylenedioxy thiophene)/Titanium Carbide Ternary Composites

Year 2023, , 1337 - 1344, 18.12.2023
https://doi.org/10.16984/saufenbilder.1340863

Abstract

The thermoelectric (TE) characteristics of polyvinyl alcohol/poly (3,4-ethylenedioxy thiophene)/titanium carbide (PVA/PEDOT/TiC) composites were explored in this work. The composite films with varying TiC weight ratios were made using the solvent casting process. The homogeneous distribution of TiC particles in the composite structure was revealed by SEM micrographs. The presence of TiC particles in the crystallinity of PVA/PEDOT was revealed by XRD patterns. The electrostatic interactions in the composite structure were revealed by FTIR-ATR studies. The electrical conductivity of PVA/PEDOT rose from 0.06 S/cm to 1.15 S/cm with the contribution of 5% TiC, while the Seebeck coefficient increased from 3.9 µV/K to 98.8 µV/K with the contribution of 1% TiC, according to TE studies. The composite samples exhibited a maximum power factor of 0.72 µW/mK2 , which is 104 times greater compared to PVA/PEDOT.

References

  • [1] L. Zhang, X. L. Shi, Y. L. Yang, Z. G. Chen, “Flexible thermoelectric materials and devices: From materials to applications,” Materials Today, vol. 46 pp. 62-108, 2021.
  • [2] S. Xu, X. L. Shi, M. Dargusch, C. Di, J. Zou, Z. G. Chen, “Conducting polymerbased flexible thermoelectric materials and devices: From mechanisms to applications,” Progress in Materials Science, vol. 121, pp. 100840, 2021.
  • [3] N. Nandihalli, C. J. Liu, T. Mori, “Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics,” Nano Energy, vol. 78, pp. 105186, 2020.
  • [4] D. Park, M. Kim, J. Kim “Fabrication of PEDOT: PSS/Ag2Se nanowires for polymer-based thermoelectric applications,” Polymers, vol. 12, no.12, pp. 2932, 2020.
  • [5] H. Ju, D. Park, J. Kim, “Conductive polymer based high-performance hybrid thermoelectrics: Polyaniline/tin (II) sulfide nanosheet composites,” Polymer vol. 160, pp. 24-29, 2019.
  • [6] Y. Wang, L. Yang, X. L. Shi, X. Shi, L. Chen, M.S. Dargusch, J. Zou, Z. G. Chen, “Flexible thermoelectric materials and generators: challenges and innovations,” Advanced Materials, vol. 31, no. 29, pp. 1807916, 2019.
  • [7] Z. Fan, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang, “Recent developments in flexible thermoelectrics: From materials to devices,” Renewable and Sustainable Energy Reviews, vol. 137, pp. 110448, 2021.
  • [8] D. Ni, H. Song, Y. Chen, K. Cai, “Freestanding highly conducting PEDOT films for flexible thermoelectric generator,” Energy, vol. 170, pp. 53-61 2019.
  • [9] H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun, J. Ouyang, “Recent development of thermoelectric polymers and composites,” Macromolecular Rapid Communications, vol. 39, no. 6, pp. 1700727, 2018.
  • [10] Y. Yang, H. Deng, Q. Fu, “Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices,” Materials Chemistry Frontiers, vol. 4, no. 11, pp. 3130-3152, 2020.
  • [11] A. F. Al Naim, A. G. El-Shamy, “Review on recent development on thermoelectric functions of PEDOT: PSS based systems,” Materials Science in Semiconductor Processing, vol. 152, pp. 107041, 2022.
  • [12] J. Yang, Y. Jia, Y. Liu, P. Liu, Y. Wang, M. Li, F. Jiang, X. Lan, J. Xu, “PEDOT: PSS/PVA/Te ternary composite fibers toward flexible thermoelectric generator,” Composites Communications, vol. 27, pp. 100855, 2021.
  • [13] Y. Du, J. Chen, J. Qin, Q. Meng, S. Z. Shen, “Flexible PVA/PEDOT: PSS thermoelectric nanocomposite films prepared via an additive manufacturing process,” Composites Communications, vol. 35, pp. 101312, 2022.
  • [14] X. Jiang, C. Ban, L. Li, J. Hao, N. Shi, W. Chen, P. Gao, “Electrospinning of BCNNTs/PVA/PEDOT composite nanofibers films for research thermoelectric performance,” Journal of Applied Polymer Science, vol. 139, no. 17, pp. 52049, 2022.
  • [15] A. F. Al Naim, S. S. Ibrahim, A. gamal El-Shamy, “New high mechanically flexible and bendable nanocomposite Ag@ NCDots/PEDOT: PSS/PVA films with high thermoelectric power performance and generator,” Polymer, vol. 226, pp. 123792, 2021.
  • [16] S. Jin, T. Sun, Y. Fan, L. Wang, M. Zhu, J. Yang, W. Jiang, “Synthesis of freestanding PEDOT:PSS/PVA@ Ag NPs nanofiber film for highperformance flexible thermoelectric generator,” Polymer, vol. 167, pp. 102- 108, 2019.
  • [17] C. E. Ozturk, V. Ugraskan, O. Yazici, “Thermoelectric Properties of Titanium Carbide Filled Polypyrrole Hybrid Composites,” Journal of Electronic Materials, vol. 51, no. 9, pp. 5246- 5252, 2022.
  • [18] S. Mahendia, A. K. Tomar, R. P. Chahal, P. Goyal, S. Kumar, “Optical and structural properties of poly (vinyl alcohol) films embedded with citratestabilized gold nanoparticles,” Journal of Physics D: Applied Physics, vol. 44, no.20, pp. 205105, 2011.
  • [19] N. Romyen, S. Thongyai, P. Praserthdam, G. A. Sotzing, “Enhancement of poly (3, 4- ethylenedioxy thiophene)/poly (styrene sulfonate) properties by poly (vinyl alcohol) and doping agent as conductive nano-thin film for electronic application,” Journal of Materials Science: Materials in Electronics, vol. 24, pp. 2897-2905, 2013.
  • [20] X. Wang, G. Y. Feng, M. Q. Ge, “Influence of ethylene glycol vapor annealing on structure and property of wet-spun PVA/PEDOT: PSS blend fiber,” Journal of Materials Science, vol. 52, pp. 6917-6927, 2017.
  • [21] X. Wang, M. Li, G. Feng, M. Ge, “On the mechanism of conductivity enhancement in PEDOT: PSS/PVA blend fiber induced by UV-light irradiation,” Applied Physics A, vol. 126, pp. 1-7, 2020.
  • [22] H. Zhang, X. Zhong, J. J. Xu, H. Y. Chen, “Fe3O4/polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties,” Langmuir, vol. 24, no.23, pp. 13748- 13752, 2008.
  • [23] F. Zhang, Y. Shi, Z. Zhao, W. Song, Y. Cheng, “Influence of semiconductor/insulator/semiconducto r structure on the photo-catalytic activity of Fe3O4/SiO2/polythiophene core/shell submicron composite,” Applied Catalysis B: Environmental, vol. 150, pp. 472-478, 2014.
  • [24] E. Salim, A. E. Tarabiah, “The Influence of NiO Nanoparticles on Structural, Optical and Dielectric Properties of CMC/PVA/PEDOT: PSS Nanocomposites,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 33, pp. 1638–1645, 2023.
  • [25] T. A. Yemata, Y. Zheng, A. K. K. Kyaw, X. Wang, J. Song, W. S. Chin, J. Xu, “Modulation of the doping level of PEDOT: PSS film by treatment with hydrazine to improve the Seebeck coefficient,” RSC Advances, vol. 10, no.3, pp. 1786-1792, 2020.
  • [26] H. Song, K. Cai, S. Shen, “Enhanced thermoelectric properties of PEDOT/PSS/Te composite films treated with H2SO4,” Journal of Nanoparticle Research, vol.18, pp. 1-9, 2016.
  • [27] E. Jin Bae, Y. Hun Kang, K. S. Jang, S. Yun Cho, “Enhancement of thermoelectric properties of PEDOT: PSS and tellurium-PEDOT: PSS hybrid composites by simple chemical treatment,” Scientific reports, vol. 6, no. 1, pp. 18805, 2016.
  • [28] F.P. Du, N. N. Cao, Y.F. Zhang, P. Fu, Y. G. Wu, Z. D. Lin, R. Shi, A. Amini, C. Cheng, “PEDOT: PSS/graphene quantum dots films with enhanced thermoelectric properties via strong interfacial interaction and phase separation,” Scientific reports, vol. 8, no. 1, pp. 6441, 2018.
There are 28 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other)
Journal Section Research Articles
Authors

Volkan Uğraşkan 0000-0001-5230-2084

Early Pub Date December 1, 2023
Publication Date December 18, 2023
Submission Date August 10, 2023
Acceptance Date September 26, 2023
Published in Issue Year 2023

Cite

APA Uğraşkan, V. (2023). Thermoelectric Properties of Flexible Polyvinyl Alcohol/Poly (3,4- Ethylenedioxy thiophene)/Titanium Carbide Ternary Composites. Sakarya University Journal of Science, 27(6), 1337-1344. https://doi.org/10.16984/saufenbilder.1340863
AMA Uğraşkan V. Thermoelectric Properties of Flexible Polyvinyl Alcohol/Poly (3,4- Ethylenedioxy thiophene)/Titanium Carbide Ternary Composites. SAUJS. December 2023;27(6):1337-1344. doi:10.16984/saufenbilder.1340863
Chicago Uğraşkan, Volkan. “Thermoelectric Properties of Flexible Polyvinyl Alcohol/Poly (3,4- Ethylenedioxy thiophene)/Titanium Carbide Ternary Composites”. Sakarya University Journal of Science 27, no. 6 (December 2023): 1337-44. https://doi.org/10.16984/saufenbilder.1340863.
EndNote Uğraşkan V (December 1, 2023) Thermoelectric Properties of Flexible Polyvinyl Alcohol/Poly (3,4- Ethylenedioxy thiophene)/Titanium Carbide Ternary Composites. Sakarya University Journal of Science 27 6 1337–1344.
IEEE V. Uğraşkan, “Thermoelectric Properties of Flexible Polyvinyl Alcohol/Poly (3,4- Ethylenedioxy thiophene)/Titanium Carbide Ternary Composites”, SAUJS, vol. 27, no. 6, pp. 1337–1344, 2023, doi: 10.16984/saufenbilder.1340863.
ISNAD Uğraşkan, Volkan. “Thermoelectric Properties of Flexible Polyvinyl Alcohol/Poly (3,4- Ethylenedioxy thiophene)/Titanium Carbide Ternary Composites”. Sakarya University Journal of Science 27/6 (December 2023), 1337-1344. https://doi.org/10.16984/saufenbilder.1340863.
JAMA Uğraşkan V. Thermoelectric Properties of Flexible Polyvinyl Alcohol/Poly (3,4- Ethylenedioxy thiophene)/Titanium Carbide Ternary Composites. SAUJS. 2023;27:1337–1344.
MLA Uğraşkan, Volkan. “Thermoelectric Properties of Flexible Polyvinyl Alcohol/Poly (3,4- Ethylenedioxy thiophene)/Titanium Carbide Ternary Composites”. Sakarya University Journal of Science, vol. 27, no. 6, 2023, pp. 1337-44, doi:10.16984/saufenbilder.1340863.
Vancouver Uğraşkan V. Thermoelectric Properties of Flexible Polyvinyl Alcohol/Poly (3,4- Ethylenedioxy thiophene)/Titanium Carbide Ternary Composites. SAUJS. 2023;27(6):1337-44.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.