Research Article
BibTex RIS Cite

Tarımsal atıklardan elde edilen sürdürülebilir tekstil lifleri: Ananas yaprağı lifleri

Year 2016, , 203 - 221, 01.08.2016
https://doi.org/10.16984/saufenbilder.07521

Abstract

Ananas yaprağı lifleri, adından da anlaşılacağı gibi ananas bitkisinin yapraklarından elde edilen doğal bir lif türüdür. Ananas bitkisi genellikle meyvesi için yetiştirildiğinden, her yıl tonlarca ananas yaprağı tarımsal atık olarak ortaya çıkmaktadır. Yapılarındaki selüloz oranı oldukça yüksek olan bu lifler, üstün mekanik özellikleri ve suyu seven yapısı ile iyi bir tekstil malzemesi olarak kabul edilmektedir. Ayrıca, kolay ulaşılabilir, biyobozunur ve geri dönüştürülebilir olması sayesinde özellikle biyo-kompozitlerin üretiminde tercih edilen bir malzeme haline gelmiştir. Hem tarımsal atıkların değerlendirilmesi hem de çevre dostu özellikleri ile sürdürülebilir üretimin hedeflendiği şu günlerde, ananas yaprağı lifi önemli bir hammadde kaynağıdır. Bu derleme çalışmasında, ananas yaprağı liflerinin yapısı, özellikleri, elde ediliş yöntemleri ve kullanım alanları gibi başlıklar detaylı olarak incelenmiştir.  

References

  • (Ekim). Sürdürülebilirlik. Available: https://tr.wikipedia.org/wiki/S%C3%BCrd%C3%BCr%C3%BClebilirlik
  • H. Y. Odabaşoğlu, O. O. Avinç, and A. Yavaş, "Susuz Boyama," Tekstil ve Mühendis, vol. 20, pp. 62-79, 2013.
  • M. Eyvaz, M. Bayramoğlu, and M. Kobya, "Tekstil Endüstrisi Atıksularının Elektrokoagülasyon Ile Arıtılması: Teknik Ve Ekonomik Değerlendirme," İTÜDERGİSİ/e, vol. 16, pp. 55-65, 2010.
  • A. Büyükdere, "Tekstil Endüstrisi Atıksularının Membran Teknolojileri İle Arıtılması Ve Geri Kazanılması," Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 2008.
  • F. O. Kocaer and U. Alkan, "Boyar Madde Içeren Tekstil Atiksularinin Aritim Alternatifleri," Uludag Üniversitesi Mühendislik Mimarlik Fakültesi Dergisi, vol. 7, pp. 47-55, 2002.
  • L. U. Devi, S. Bhagawan, and S. Thomas, "Mechanical Properties of Pineapple Leaf Fiber‐Reinforced Polyester Composites," Journal of Applied Polymer Science, vol. 64, pp. 1739-48, 1997.
  • M. Biswal, S. Mohanty, and S. K. Nayak, "Influence of Organically Modified Nanoclay on the Performance of Pineapple Leaf Fiber‐Reinforced Polypropylene Nanocomposites," Journal of Applied Polymer Science, vol. 114, pp. 4091-103, 2009.
  • S. K. Chattopadhyay, R. Khandal, R. Uppaluri, and A. K. Ghoshal, "Influence of Varying Fiber Lengths on Mechanical, Thermal, and Morphological Properties of Ma‐G‐Pp Compatibilized and Chemically Modified Short Pineapple Leaf Fiber Reinforced Polypropylene Composites," Journal of Applied Polymer Science, vol. 113, pp. 3750-56, 2009.
  • D. N. Saheb and J. Jog, "Natural Fiber Polymer Composites: A Review," Advances in Polymer Technology, vol. 18, pp. 351-63, 1999.
  • A. Mohamed, S. Sapuan, and A. Khalina, "Selected Properties of Hand-Laid and Compression Molded Vinyl Ester and Pineapple Leaf Fiber (Palf)-Reinforced Vinyl Ester Composites," International Journal of Mechanical and Materials Engineering, vol. 5, pp. 68-73, 2010.
  • A. Mohamed, S. Sapuan, M. Shahjahan, and A. Khalina, "Effects of Simple Abrasive Combing and Pretreatments on the Properties of Pineapple Leaf Fibers (Palf) and Palf-Vinyl Ester Composite Adhesion," Polymer-Plastics Technology and Engineering, vol. 49, pp. 972-78, 2010.
  • K. Joseph, R. D. Tolêdo Filho, B. James, S. Thomas, and L. Carvalho, "A Review on Sisal Fiber Reinforced Polymer Composites," Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 3, pp. 367-79, 1999.
  • B. L. S. Sipiao, R. L. M. Paiva, S. A. S. Goulart, and D. R. Mulinari, "Effect of Chemical Modification on Mechanical Behaviour of Polypropylene Reinforced Pineapple Crown Fibers Composites," Procedia Engineering, vol. 10, pp. 2028-33, // 2011.
  • S. Nilofer and C. B. SBVJ, "Compression Properties of Palf Fiber Polymer Composite," International Journal of Emerging Trends in Engineering Research (IJETER), vol. 3, pp. 492-94, 2015.
  • S. Luo and A. Netravali, "Mechanical and Thermal Properties of Environmental-Friendly" Green" Composites Made from Pineapple Leaf Fibers and Poly (Hydroxybutyrate-Co-Valerate) Resin," Polymer composites, vol. 20, p. 367, 1999.
  • W. W. Nadirah, M. Jawaid, A. A. Al Masri, H. A. Khalil, S. Suhaily, and A. Mohamed, "Cell Wall Morphology, Chemical and Thermal Analysis of Cultivated Pineapple Leaf Fibres for Industrial Applications," Journal of Polymers and the Environment, vol. 20, pp. 404-11, 2012.
  • U. Hujuri, S. K. Chattopadhay, R. Uppaluri, and A. K. Ghoshal, "Effect of Maleic Anhydride Grafted Polypropylene on the Mechanical and Morphological Properties of Chemically Modified Short‐Pineapple‐Leaf‐Fiber‐Reinforced Polypropylene Composites," Journal of Applied Polymer Science, vol. 107, pp. 1507-16, 2008.
  • L. U. Devi, K. Joseph, K. C. M. Nair, and S. Thomas, "Ageing Studies of Pineapple Leaf Fiber–Reinforced Polyester Composites," Journal of Applied Polymer Science, vol. 94, pp. 503-10, 2004.
  • L. U. Devi, S. Bhagawan, and S. Thomas, "Dynamic Mechanical Properties of Pineapple Leaf Fiber Polyester Composites," Polymer composites, vol. 32, pp. 1741-50, 2011.
  • L. U. Devi, S. Bhagawan, and S. Thomas, "Dynamic Mechanical Analysis of Pineapple Leaf/Glass Hybrid Fiber Reinforced Polyester Composites," Polymer composites, vol. 31, pp. 956-65, 2010.
  • S. Banik, D. Nag, and S. Debnath, "Utilization of Pineapple Leaf Agro-Waste for Extraction of Fibre and the Residual Biomass for Vermicomposting," INDIAN JOURNAL OF FIBRE AND TEXTILE RESEARCH, vol. 36, p. 172, 2011.
  • Y. Yusof, S. A. Yahya, and A. Adam, "Novel Technology for Sustainable Pineapple Leaf Fibers Productions," Procedia CIRP, vol. 26, pp. 756-60, 2015.
  • E. Bozacı, T. Öktem, and N. Seventekin, "Ananas Yaprak Lifi," Tekstil & Konfeksiyon, vol. 3, pp. 167-70, 2007.
  • U. Wisittanawat, S. Thanawan, and T. Amornsakchai, "Mechanical Properties of Highly Aligned Short Pineapple Leaf Fiber Reinforced–Nitrile Rubber Composite: Effect of Fiber Content and Bonding Agent," Polymer Testing, vol. 35, pp. 20-27, 2014.
  • Y. Indrayani, D. Setyawati, T. Yoshimura, and K. Umemura, "Termite Resistance of Medium Density Fibreboard Produced from Renewable Biomass of Agricultural Fibre," Procedia Environmental Sciences, vol. 20, pp. 767-71, // 2014.
  • R. R. Franck, Bast and Other Plant Fibres vol. 39: Crc Press, 2005.
  • A. K. Mohanty, M. Misra, and L. T. Drzal, Natural Fibers, Biopolymers, and Biocomposites: CRC Press, 2005.
  • T. Rowe, Interior Textiles: Design and Developments. Cambridge: Woodhead Publishing Limited, 2009.
  • A. Mohanty, P. Tripathy, M. Misra, S. Parija, and S. Sahoo, "Chemical Modification of Pineapple Leaf Fiber: Graft Copolymerization of Acrylonitrile onto Defatted Pineapple Leaf Fibers," Journal of Applied Polymer Science, vol. 77, pp. 3035-43, 2000.
  • R. Chollakup, R. Tantatherdtam, S. Ujjin, and K. Sriroth, "Pineapple Leaf Fiber Reinforced Thermoplastic Composites: Effects of Fiber Length and Fiber Content on Their Characteristics," Journal of Applied Polymer Science, vol. 119, pp. 1952-60, 2011.
  • R. Arib, S. Sapuan, M. Ahmad, M. Paridah, and H. K. Zaman, "Mechanical Properties of Pineapple Leaf Fibre Reinforced Polypropylene Composites," Materials & Design, vol. 27, pp. 391-96, 2006.
  • M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. Ishak, et al., "A Review on Pineapple Leaves Fibre and Its Composites," International Journal of Polymer Science, vol. 2015, 2015.
  • Y. Payae and N. Lopattananon, "Adhesion of Pineapple-Leaf Fiber to Epoxy Matrix: The Role of Surface Treatments," Sonklanakarin Journal of Science and Technology, vol. 31, p. 189, 2009.
  • A. Mohanty, S. Parija, and M. Misra, "Ce (Iv)‐N‐Acetylglycine Initiated Graft Copolymerization of Acrylonitrile onto Chemically Modified Pineapple Leaf Fibers," Journal of Applied Polymer Science, vol. 60, pp. 931-37, 1996.
  • (Eylül). Other Natural Fibres. Available: http://texmin.nic.in/policy/Fibre_Policy_Sub_%20Groups_Report_dir_mg_d_20100608_6.pdf
  • M. J. M. Sunil Pardeshi, Vijay Goud. (Eylül). Extraction of Pineapple Leaf Fiber and Its Spinning : A Review. Available: http://www.fibre2fashion.com/industry-article/45/4417/extraction-of-pineapple-leaf1.asp
  • S. Dey and K. Satapathy, "A Combined Technology Package for Extraction of Pineapple Leaf Fibre-an Agrowaste, Utilization of Biomass and for Application in Textiles," National Institute of Research on Jute and Allied Fibre Technology Indian Council of Agricultural Research, Kolkata2013.
  • L. Oijala. (2012, Kasım). Fiber Watch: It’s Ripe Time to Pull out the Pineapple Leaves. Available: http://ecosalon.com/fiber-watch-its-ripe-time-to-pull-out-the-pineapple-leaves/
  • J. Bai and S. Cui, "Pretreatment of Pineapple Leaf Fiber with Bu-Gong Tea Saponin," in International Conference on Manufacturing and Engineering Technology (ICMET 2014), Sanya, China, 2014, p. 33.
  • S. Özdemir and O. Tekoğlu, "Ekolojik Tekstil Ürünlerinde Kullanılan Hammaddeler," AKDENIZ SANAT DERGİSİ, vol. 4, pp. 27-30, 2014.
  • G. YAZICIOĞLU, Pamuk Ve Diğer Bitkisel Lifler. İzmir: Tekstil Mühendisliği Bölümü Mühendislik Fakültesi, Basım Ünitesi, 1999.
  • M. A. Rahman, "Study on Modified Pineapple Leaf Fiber," Journal of Textile and Apparel, Technology and Management, vol. 7, 2011.
  • N. Reddy and Y. Yang, "Biofibers from Agricultural Byproducts for Industrial Applications," Trends in Biotechnology, vol. 23, pp. 22-27, 2005.
  • D. P. Bartholomew, R. E. Paull, and K. G. Rohrbach, The Pineapple: Botany, Production, and Uses: CABI, 2002.
  • A. Mohamed, S. Sapuan, M. Shahjahan, and A. Khalina, "Characterization of Pineapple Leaf Fibers from Selected Malaysian Cultivars," Journal of Food, Agriculture & Environment, vol. 7, pp. 235-40, 2009.
  • K. Satyanarayana, J. Guimarães, and F. Wypych, "Studies on Lignocellulosic Fibers of Brazil. Part I: Source, Production, Morphology, Properties and Applications," Composites Part A: Applied Science and Manufacturing, vol. 38, pp. 1694-709, 2007.
  • S. Bansal and P. Sodhi, "Pineapple Leaf Fibers: Eco Souvenir," Research Journal of Humanities and Social Sciences, vol. 5, pp. 141-47, 2014.
  • A. Datta, B. Samantaray, and S. Bhattacherjee, "Mechanical and Dielectric Properties of Pineapple Fibres," Journal of materials science letters, vol. 3, pp. 667-70, 1984.
  • L. Mwaikambo, "Review of the History, Properties and Application of Plant Fibres," African Journal of Science and Technology, vol. 7, p. 121, 2006.
  • S. Kalia, B. Kaith, and I. Kaur, Cellulose Fibers: Bio-and Nano-Polymer Composites: Green Chemistry and Technology. London: Springer Science & Business Media, 2011.
  • M.-L. E. Florian, D. P. Kronkright, and R. E. Norton, The Conservation of Artifacts Made from Plant Materials: Getty Publications, 1991.
  • Y. Yusof, S. A. Yahya, and A. Adam, "A New Approach for Palf Productions and Spinning System: The Role of Surface Treatments," Journal of Advanced Agricultural Technologies, vol. 1, pp. 161-64, 2014.
  • (2009, Eylül). The Pineapple. Available: https://www.daf.qld.gov.au/__data/assets/pdf_file/0007/66247/Ch1-The-Pineapple.pdf
  • N. Reddy and Y. Yang, Innovative Biofibers from Renewable Resources: Springer, 2014.
  • L. M. de Carvalho, F. M. Fernandes, and S. Zabel, "The Collection of Pineapple Fibers-Ananas Comosus (Bromeliaceae)-at the Harvard University Herbaria," Harvard Papers in Botany, vol. 14, pp. 105-09, 2009.
  • R. Heinicke and W. Gortner, "Stem Bromelain—a New Protease Preparation from Pineapple Plants," Economic Botany, vol. 11, pp. 225-34, 1957.
  • S. S. Munawar, K. Umemura, F. Tanaka, and S. Kawai, "Effects of Alkali, Mild Steam, and Chitosan Treatments on the Properties of Pineapple, Ramie, and Sansevieria Fiber Bundles," Journal of wood science, vol. 54, pp. 28-35, 2008.
  • D. Cathcart, "The Importance of Maintaining Bromeliad Imports," Florida entomologist, pp. 16-21, 1995.
  • M. A. Gardetti and S. S. Muthu, "Handbook of Sustainable Luxury Textiles and Fashion," vol. 1, ed: Springer, 2015.
  • (Kasım). Does a Pineapple Grow from a Pineapple Tree? Available: http://www.todayprimetimes.com/2015/01/does-pineapple-grow-from-pineapple-tree.html
  • (Kasım). Benefits of Pineapple. Available: http://www.donkoy.com/benefits-of-pineapple/
  • S. Ghosh, M. Sinha, S. Dey, and S. Bhaduri, "Processing of Pineapple Leaf Fibre in Cotton Machinery," Text Trends, vol. 14, 1982.
  • I. Doraiswamy and P. Chellamani, "Pineapple Leaf Fabrics," Textile Progress, vol. 24, pp. 1-37, 1993.
  • K. Satyanarayana, K. Sukumaran, P. Mukherjee, C. Pavithran, and S. Pillai, "Natural Fibre-Polymer Composites," Cement and Concrete composites, vol. 12, pp. 117-36, 1990.
  • M. S. Smole, S. Hribernik, K. S. Kleinschek, and T. Kreže, "Plant Fibres for Textile and Technical Applications," Advances in Agrophysical Research, vol. 10, pp. 369-98, 2013.
  • N. Lopattananon, K. Panawarangkul, K. Sahakaro, and B. Ellis, "Performance of Pineapple Leaf Fiber–Natural Rubber Composites: The Effect of Fiber Surface Treatments," Journal of Applied Polymer Science, vol. 102, pp. 1974-84, 2006.
  • N. Chand, R. Tiwary, and P. Rohatgi, "Bibliography Resource Structure Properties of Natural Cellulosic Fibres—an Annotated Bibliography," Journal of Materials Science, vol. 23, pp. 381-87, 1988.
  • (Kasım). From Pineapple to Puma. Available: http://www.crane.tv/pinatex
  • W. Liu, M. Misra, P. Askeland, L. T. Drzal, and A. K. Mohanty, "‘Green’composites from Soy Based Plastic and Pineapple Leaf Fiber: Fabrication and Properties Evaluation," Polymer, vol. 46, pp. 2710-21, 2005.
  • M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, "Effect of Chemical Modifications of the Pineapple Leaf Fiber Surfaces on the Interfacial and Mechanical Properties of Laminated Biocomposites," Composite Interfaces, vol. 15, pp. 169-91, 2008.
  • B. M. Cherian, A. L. Leão, S. F. de Souza, L. M. M. Costa, G. M. de Olyveira, M. Kottaisamy, et al., "Cellulose Nanocomposites with Nanofibres Isolated from Pineapple Leaf Fibers for Medical Applications," Carbohydrate Polymers, vol. 86, pp. 1790-98, 2011.
  • S. Hariharan and P. Nambisan, "Optimization of Lignin Peroxidase, Manganese Peroxidase, and Lac Production from Ganoderma Lucidum under Solid State Fermentation of Pineapple Leaf," BioResources, vol. 8, pp. 250-71, 2012.
  • P. Das, D. Nag, S. Debnath, and L. Nayak, "Machinery for Extraction and Traditional Spinning of Plant Fibres," Indian Journal of Traditional Knowledge, vol. 9, pp. 386-93, 2010.
  • M. Mert, Lif Bitkileri. Ankara: Nobel Yayın Dağıtım, 2009.
  • R. Sinclair, Textiles and Fashion: Materials, Design and Technology. Cambridge: Woodhead Publishing Limited, 2014.
  • N. Kengkhetkit and T. Amornsakchai, "Utilisation of Pineapple Leaf Waste for Plastic Reinforcement: 1. A Novel Extraction Method for Short Pineapple Leaf Fiber," Industrial Crops and Products, vol. 40, pp. 55-61, 2012.
  • P. Sureshkumar, P. Thanikaivelan, K. Phebe, K. Krishnaraj, R. Jagadeeswaran, and B. Chandrasekaran, "Investigations on Structural, Mechanical, and Thermal Properties of Pineapple Leaf Fiber-Based Fabrics and Cow Softy Leathers: An Approach toward Making Amalgamated Leather Products," Journal of Natural Fibers, vol. 9, pp. 37-50, 2012.
  • R. Kannojiya, K. Gaurav, R. Ranjan, N. Tiyer, and K. Pandey, "Extraction of Pineapple Fibres for Making Commercial Products," Journal of Environmental Research And Development Vol, vol. 7, 2013.
  • I. Doraiswamy and P. Chellamani, Pineapple-Leaf Fibres vol. 24. Manchester: The Textile Institute, 1993.
  • N. Debasis and D. Sanjoy, "A Pineapple Leaf Fibre Decorticator Assembly," India Patents, vol. 2334.
  • (Kasım). Pineapple Fiber Extraction. Available: https://commons.wikimedia.org/wiki/File:Pineapple-fiber-extraction.jpg
  • (2009, Kasım). Mutagacha. Available: http://maebird.blogspot.com.tr/2009_11_01_archive.html
  • (Kasım). Decorticator. Available: http://www.premagnetos.com/services
  • (Kasım). Decorticating Pina. Available: https://www.youtube.com/watch?v=UFGMa-33cMg
  • A. Hulle, P. Kadole, and P. Katkar, "Agave Americana Leaf Fibers," Fibers, vol. 3, pp. 64-75, 2015.
  • (2012, Kasım). Piña: Weaving Aklan’s Queen of Fibers. Available: http://langyaw.com/2012/02/23/pina-weaving-aklans-queen-of-fibers/
  • M.-f. LI, W.-w. LIAN, Y.-g. DENG, and T. HUANG, "Discussion on Technological Parameters of Pineapple Leaf Fiber Degumming," Shanghai Textile Science & Technology, vol. 4, p. 008, 2009.
  • M. Bora, C. Talukdar, and M. Talukdar, "Tensile Properties of Plant Fibres Readily Available in North-Eastern Region of India," INDIAN JOURNAL OF FIBRE AND TEXTILE RESEARCH, vol. 24, pp. 172-76, 1999.
  • E.-p. Liu, A.-p. Guo, Y.-l. Guo, H. KONG, Y.-s. WANG, X.-y. ZHANG, et al., "Study on Enzymatic Degumming of Pineapple Leaf Fiber," Journal of Textile Research, vol. 27, p. 41, 2006.
  • A. Briggs-Goode and K. Townsend, Textile Design: Principles, Advances and Applications. Cambridge: Woodhead Publishing Limited, 2011.
  • (Kasım). Piña. Available: https://en.wikipedia.org/wiki/Pi%C3%B1a
  • (2014, Kasım). P Is for Piña Cloth, One of the Most Beautiful Fabrics of Manila. Available: http://morrighansmuse.com/2014/04/18/p-is-for-pina-cloth-one-of-the-most-beautiful-fabrics-of-manila/
  • M. Lewin, Handbook of Fiber Chemistry. New York: CRC Press, 2010.
  • P. Mukherjee and K. Satyanarayana, "Structure and Properties of Some Vegetable Fibres," Journal of Materials Science, vol. 21, pp. 51-56, 1986.
  • S. Kalia and L. Avérous, Biopolymers: Biomedical and Environmental Applications vol. 70: John Wiley & Sons, 2011.
  • W. Sricharussin, P. Ree-iam, W. Phanomchoeng, and S. Poolperm, "Effect of Enzymatic Treatment on the Dyeing of Pineapple Leaf Fibres with Natural Dyes," Science Asia, vol. 35, pp. 31-36, 2009.
  • P. Ghosh and R. Gangopadhyay, "Photofunctionalization of Cellulose and Lignocellulose Fibres Using Photoactive Organic Acids," European Polymer Journal, vol. 36, pp. 625-34, 2000.
  • S. Konak, "Bamya Bitkisinden Suda Çürütme Yöntem Ile Lif Elde Edilmesi Ve Elde Edilen Lifin Çeşitli Fiziksel Kimyasal Ve Mekanik Özelliklerinin Ölçümü," Yüksek Lisans Tezi, Tekstil Mühendisliği, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, 2014.
  • Y. Bulut and Ü. H. Erdoğan, "Selüloz Esaslı Doğal Liflerin Kompozit Üretiminde Takviye Materyali Olarak Kullanımı," Tekstil ve Mühendis, vol. 18, pp. 26-35, 2011.
  • R. Kozlowski, Handbook of Natural Fibres: Types, Properties and Factors Affecting Breeding and Cultivation. Cambridge: Woodhead Publishing Limited, 2012.
  • M. Ahmed, S. Chattopadhyay, A. Chaphekar, R. Gaikwad, and S. Dey, "Characteristics of Degummed Ramie Fibre and Its Cotton Blended Yarns," Indian Journal of Fibre & Textile Research, vol. 29, pp. 362-65, 2004.
  • S. Fakirov and D. Bhattacharyya, "Handbook of Engineering Biopolymers: Homopolymers," Blends, and Composites”, Hanser Gardner USA, 2007.
  • S. Kalia, B. Kaith, and I. Kaur, "Pretreatments of Natural Fibers and Their Application as Reinforcing Material in Polymer Composites—a Review," Polymer Engineering & Science, vol. 49, pp. 1253-72, 2009.
  • S. Mishra, A. K. Mohanty, L. T. Drzal, M. Misra, and G. Hinrichsen, "A Review on Pineapple Leaf Fibers, Sisal Fibers and Their Biocomposites," Macromolecular Materials and Engineering, vol. 289, pp. 955-74, 2004.
  • R. Samal and B. Bhuyan, "Chemical Modification of Lignocellulosic Fibers I. Functionality Changes and Graftcopolymerization of Acrylonitrile onto Pineapple Leaf Fibers; Their Characterization and Behavior," Journal of Applied Polymer Science, vol. 52, pp. 1675-85, 1994.
  • A. Kaymakcı, N. Ayrılmış, and T. Akbulut, "Dış Cephe Kaplamalarına Ekolojik Bir Yaklaşım: Ahşap Polimer Kompozitler," in 7. Ulusal Çatı & Cephe Sempozyumu İstanbul, 2014, pp. 3-4.
  • C. Py, J. J. Lacoeuilhe, and C. Teisson, The Pineapple. Cultivation and Uses: G.-P. Maisonneuve et Larose, 1987.
  • M. K. Sinha, "A Review of Processing Technology for the Utilisation of Agro-Waste Fibres," Agricultural Wastes, vol. 4, pp. 461-75, 1982.
  • R. S. Blackburn, Biodegradable and Sustainable Fibres. Cambridge: Woodhead Publishing Limited, 2005.
  • R. Samal and M. C. Ray, "Effect of Chemical Modifications on Ftir Spectra. Ii. Physicochemical Behavior of Pineapple Leaf Fiber (Palf)," Journal of Applied Polymer Science, vol. 64, pp. 2119-25, 1997.
  • J. George, S. Bhagawan, N. Prabhakaran, and S. Thomas, "Short Pineapple‐Leaf‐Fiber‐Reinforced Low‐Density Polyethylene Composites," Journal of Applied Polymer Science, vol. 57, pp. 843-54, 1995.
  • K. J. Nielson, Interior Textiles: Fabrics, Application, and Historic Style: John Wiley & Sons, 2007.
  • V. Steele, Encyclopedia of Clothing and Fashion-Vol-1 vol. 1. Detroit: Charles Scribners Sons, 2005.
  • V. Steele, Encyclopedia of Clothing and Fashion-Vol-2 vol. 2. Detroit: Charles Scribners Sons, 2005.
  • A. Azoff. (2013, Kasım). Do You Like Piña Coladas? How About Pineapple Silk? Available: http://www.heartsleevesblog.com/pineapple-silk-fashion/
  • (Kasım). Treasure in Threads: Piña Fiber Processing. Available: http://e-extension.gov.ph/elearning/course/view.php?id=76
  • (Kasım). Barong Tagalog. Available: https://en.wikipedia.org/wiki/Barong_Tagalog
  • M. A. Hermans, R. D. Sauer, S. U. Hossain, and J. D. Litvay, "Tissue Products Made from Low-Coarseness Fibers," USH1672 H, 1997.
  • (Kasım). Pineapple Fiber Fabric. Available: http://www.dbathis.com/p44/PINEAPPLE+FIBER+FABRIC/product_info.html
  • N. Talmon. (2012, Kasım). Emmy Rossum Wears an Adorable Yellow Dress Made Partly of Pineapple. Available: http://www.starpulse.com/news/Noelle_Talmon/2012/02/23/emmy_rossum_wears_an_adorable_yellow_d
  • (Kasım). Fique Pineapple Bag. Available: http://habutextiles.com/KIT-130
  • (Kasım). Pineapple Selvedge. Available: http://shop.nordstrom.com/s/naked-famous-denim-weird-guy-slim-fit-jeans-pineapple-selvedge/3646303
  • (Kasım). Patrick and Tina. Available: http://patrickandtina.weebly.com/santa-cruz.html
  • (Kasım). Pineapple Fiber (Piña) Fan with Embroidery and Calado. Available: http://www.ebuyphilippines.com/ladiesbagforexportcandystripestotebag-1-1-1-1-1-1-1-1-1-1-1-1-2.aspx
  • (Kasım). Piña Pineapple Fiber Fabric Available: http://bohohill.com/products/convertible-aladdin-unisex-pants-hindu-om-script-airy-pina-pineapple-fiber-fabric-brown?variant=2630966851
  • B. M. Cherian, A. L. Leão, S. F. de Souza, S. Thomas, L. A. Pothan, and M. Kottaisamy, "Isolation of Nanocellulose from Pineapple Leaf Fibres by Steam Explosion," Carbohydrate Polymers, vol. 81, pp. 720-25, 2010.
  • S. Hickey. (2014, Kasım). Wearable Pineapple Fibres Could Prove Sustainable Alternative to Leather. Available: http://www.theguardian.com/business/2014/dec/21/wearable-pineapple-leather-alternative
  • N. Lopattananon, Y. Payae, and M. Seadan, "Influence of Fiber Modification on Interfacial Adhesion and Mechanical Properties of Pineapple Leaf Fiber‐Epoxy Composites," Journal of Applied Polymer Science, vol. 110, pp. 433-43, 2008.
  • S. Taj, M. A. Munawar, and S. Khan, "Natural Fiber-Reinforced Polymer Composites," Proceedings-Pakistan Academy of Sciences, vol. 44, p. 129, 2007.
  • K. d. S. d. Prado and M. A. d. S. Spinacé, "Characterization of Fibers from Pineapple's Crown, Rice Husks and Cotton Textile Residues," Materials Research, vol. 18, pp. 530-37, 2015.
  • J. George, S. Bhagawan, and S. Thomas, "Improved Interactions in Chemically Modified Pineapple Leaf Fiber Reinforced Polyethylene Composites," Composite Interfaces, vol. 5, pp. 201-23, 1997.
  • J. George, S. Bhagawan, and S. Thomas, "Effects of Environment on the Properties of Low-Density Polyethylene Composites Reinforced with Pineapple-Leaf Fibre," Composites Science and Technology, vol. 58, pp. 1471-85, 1998.
  • P. Threepopnatkul, N. Kaerkitcha, and N. Athipongarporn, "Effect of Surface Treatment on Performance of Pineapple Leaf Fiber–Polycarbonate Composites," Composites Part B: Engineering, vol. 40, pp. 628-32, 2009.
  • S. Mishra, A. Mohanty, L. Drzal, M. Misra, S. Parija, S. Nayak, et al., "Studies on Mechanical Performance of Biofibre/Glass Reinforced Polyester Hybrid Composites," Composites Science and Technology, vol. 63, pp. 1377-85, 2003.
  • S. Saha, B. Das, P. Ray, S. Pandey, and K. Goswami, "Sem Studies of the Surface and Fracture Morphology of Pineapple Leaf Fibers," Textile Research Journal, vol. 60, pp. 726-31, 1990.
  • K. Panyasart, N. Chaiyut, T. Amornsakchai, and O. Santawitee, "Effect of Surface Treatment on the Properties of Pineapple Leaf Fibers Reinforced Polyamide 6 Composites," Energy Procedia, vol. 56, pp. 406-13, 2014.
  • X.-h. Huang and D.-q. Shen, "Degumming and Dyeing of Pineapple Leaf Fiber," Journal of Textile Research, vol. 27, p. 75, 2006.
  • C. Dong, Z. Lu, X. Zhang, P. Zhu, and N. Li, "The Preparation and Dyeing Properties of Pineapple Leaf Fibres Modified with a Cationic Modifier," Coloration Technology, vol. 130, pp. 260-65, 2014.
  • W. Sricharussin. (2010, Kasım). Dyeing and Finishing Pineapple Fibre Fabrics for New Value-Added Products. Available: http://www.thaiwest.su.ac.th/en/research-project-2/research-and-innovation-for-transfer-technology-to-rural-community-project/2010-2/dyeing-and-finishing-pineapple-fibre-fabrics-for-new-value-added-products/
  • D.-y. Gu and M. Li, "Study on the Pretreatment of the Pineapple Fiber/Cotton Knitted Fabrics," Textile Auxiliaries, vol. 11, p. 016, 2011.
  • W. Sricharussin, P. Ree-Iam, W. Phanomchoeng, and S. Poolperm, "Effect of Enzymatic Treatment on the Dyeing of Pineapple Leaf Fibres with Natural Dyes," Scienceasia, vol. 35, pp. 31-36, 2009.
  • M. S. Alam, G. A. Khan, and S. A. Razzaque, "Estimation of Main Constituents of Ananus Comosus (Pineapple) Leaf Fiber and Its Photo-Oxidative Degradation," Journal of Natural Fibers, vol. 6, pp. 138-50, 2009.

Sustainable textile fibers obtained from agricultural wastes: Pineapple leaf fibers

Year 2016, , 203 - 221, 01.08.2016
https://doi.org/10.16984/saufenbilder.07521

Abstract

Pineapple leaf fiber, as is evident from its name, is a natural fiber that is obtained from pineapple plant. Tons of pineapple leaves are wasted every year since pineapple plant is mostly cultivated for only fruit production. Pineapple fiber has high cellulose content in their structure and is known to be a useful textile material with excellent mechanical properties and hydrophilic character. Furthermore, this fiber has become a preferred material in the production of biocomposites owing to its properties such as easily being accessible, biodegradable and recyclable. Today, pineapple leaf fiber is an important raw material resource that can contribute to sustainable production with both utilization of agro-wastes and its eco-friendly properties. In this review, topics such as structure, properties, end uses and extraction methods of pineapple fibers are examined in detail.

References

  • (Ekim). Sürdürülebilirlik. Available: https://tr.wikipedia.org/wiki/S%C3%BCrd%C3%BCr%C3%BClebilirlik
  • H. Y. Odabaşoğlu, O. O. Avinç, and A. Yavaş, "Susuz Boyama," Tekstil ve Mühendis, vol. 20, pp. 62-79, 2013.
  • M. Eyvaz, M. Bayramoğlu, and M. Kobya, "Tekstil Endüstrisi Atıksularının Elektrokoagülasyon Ile Arıtılması: Teknik Ve Ekonomik Değerlendirme," İTÜDERGİSİ/e, vol. 16, pp. 55-65, 2010.
  • A. Büyükdere, "Tekstil Endüstrisi Atıksularının Membran Teknolojileri İle Arıtılması Ve Geri Kazanılması," Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 2008.
  • F. O. Kocaer and U. Alkan, "Boyar Madde Içeren Tekstil Atiksularinin Aritim Alternatifleri," Uludag Üniversitesi Mühendislik Mimarlik Fakültesi Dergisi, vol. 7, pp. 47-55, 2002.
  • L. U. Devi, S. Bhagawan, and S. Thomas, "Mechanical Properties of Pineapple Leaf Fiber‐Reinforced Polyester Composites," Journal of Applied Polymer Science, vol. 64, pp. 1739-48, 1997.
  • M. Biswal, S. Mohanty, and S. K. Nayak, "Influence of Organically Modified Nanoclay on the Performance of Pineapple Leaf Fiber‐Reinforced Polypropylene Nanocomposites," Journal of Applied Polymer Science, vol. 114, pp. 4091-103, 2009.
  • S. K. Chattopadhyay, R. Khandal, R. Uppaluri, and A. K. Ghoshal, "Influence of Varying Fiber Lengths on Mechanical, Thermal, and Morphological Properties of Ma‐G‐Pp Compatibilized and Chemically Modified Short Pineapple Leaf Fiber Reinforced Polypropylene Composites," Journal of Applied Polymer Science, vol. 113, pp. 3750-56, 2009.
  • D. N. Saheb and J. Jog, "Natural Fiber Polymer Composites: A Review," Advances in Polymer Technology, vol. 18, pp. 351-63, 1999.
  • A. Mohamed, S. Sapuan, and A. Khalina, "Selected Properties of Hand-Laid and Compression Molded Vinyl Ester and Pineapple Leaf Fiber (Palf)-Reinforced Vinyl Ester Composites," International Journal of Mechanical and Materials Engineering, vol. 5, pp. 68-73, 2010.
  • A. Mohamed, S. Sapuan, M. Shahjahan, and A. Khalina, "Effects of Simple Abrasive Combing and Pretreatments on the Properties of Pineapple Leaf Fibers (Palf) and Palf-Vinyl Ester Composite Adhesion," Polymer-Plastics Technology and Engineering, vol. 49, pp. 972-78, 2010.
  • K. Joseph, R. D. Tolêdo Filho, B. James, S. Thomas, and L. Carvalho, "A Review on Sisal Fiber Reinforced Polymer Composites," Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 3, pp. 367-79, 1999.
  • B. L. S. Sipiao, R. L. M. Paiva, S. A. S. Goulart, and D. R. Mulinari, "Effect of Chemical Modification on Mechanical Behaviour of Polypropylene Reinforced Pineapple Crown Fibers Composites," Procedia Engineering, vol. 10, pp. 2028-33, // 2011.
  • S. Nilofer and C. B. SBVJ, "Compression Properties of Palf Fiber Polymer Composite," International Journal of Emerging Trends in Engineering Research (IJETER), vol. 3, pp. 492-94, 2015.
  • S. Luo and A. Netravali, "Mechanical and Thermal Properties of Environmental-Friendly" Green" Composites Made from Pineapple Leaf Fibers and Poly (Hydroxybutyrate-Co-Valerate) Resin," Polymer composites, vol. 20, p. 367, 1999.
  • W. W. Nadirah, M. Jawaid, A. A. Al Masri, H. A. Khalil, S. Suhaily, and A. Mohamed, "Cell Wall Morphology, Chemical and Thermal Analysis of Cultivated Pineapple Leaf Fibres for Industrial Applications," Journal of Polymers and the Environment, vol. 20, pp. 404-11, 2012.
  • U. Hujuri, S. K. Chattopadhay, R. Uppaluri, and A. K. Ghoshal, "Effect of Maleic Anhydride Grafted Polypropylene on the Mechanical and Morphological Properties of Chemically Modified Short‐Pineapple‐Leaf‐Fiber‐Reinforced Polypropylene Composites," Journal of Applied Polymer Science, vol. 107, pp. 1507-16, 2008.
  • L. U. Devi, K. Joseph, K. C. M. Nair, and S. Thomas, "Ageing Studies of Pineapple Leaf Fiber–Reinforced Polyester Composites," Journal of Applied Polymer Science, vol. 94, pp. 503-10, 2004.
  • L. U. Devi, S. Bhagawan, and S. Thomas, "Dynamic Mechanical Properties of Pineapple Leaf Fiber Polyester Composites," Polymer composites, vol. 32, pp. 1741-50, 2011.
  • L. U. Devi, S. Bhagawan, and S. Thomas, "Dynamic Mechanical Analysis of Pineapple Leaf/Glass Hybrid Fiber Reinforced Polyester Composites," Polymer composites, vol. 31, pp. 956-65, 2010.
  • S. Banik, D. Nag, and S. Debnath, "Utilization of Pineapple Leaf Agro-Waste for Extraction of Fibre and the Residual Biomass for Vermicomposting," INDIAN JOURNAL OF FIBRE AND TEXTILE RESEARCH, vol. 36, p. 172, 2011.
  • Y. Yusof, S. A. Yahya, and A. Adam, "Novel Technology for Sustainable Pineapple Leaf Fibers Productions," Procedia CIRP, vol. 26, pp. 756-60, 2015.
  • E. Bozacı, T. Öktem, and N. Seventekin, "Ananas Yaprak Lifi," Tekstil & Konfeksiyon, vol. 3, pp. 167-70, 2007.
  • U. Wisittanawat, S. Thanawan, and T. Amornsakchai, "Mechanical Properties of Highly Aligned Short Pineapple Leaf Fiber Reinforced–Nitrile Rubber Composite: Effect of Fiber Content and Bonding Agent," Polymer Testing, vol. 35, pp. 20-27, 2014.
  • Y. Indrayani, D. Setyawati, T. Yoshimura, and K. Umemura, "Termite Resistance of Medium Density Fibreboard Produced from Renewable Biomass of Agricultural Fibre," Procedia Environmental Sciences, vol. 20, pp. 767-71, // 2014.
  • R. R. Franck, Bast and Other Plant Fibres vol. 39: Crc Press, 2005.
  • A. K. Mohanty, M. Misra, and L. T. Drzal, Natural Fibers, Biopolymers, and Biocomposites: CRC Press, 2005.
  • T. Rowe, Interior Textiles: Design and Developments. Cambridge: Woodhead Publishing Limited, 2009.
  • A. Mohanty, P. Tripathy, M. Misra, S. Parija, and S. Sahoo, "Chemical Modification of Pineapple Leaf Fiber: Graft Copolymerization of Acrylonitrile onto Defatted Pineapple Leaf Fibers," Journal of Applied Polymer Science, vol. 77, pp. 3035-43, 2000.
  • R. Chollakup, R. Tantatherdtam, S. Ujjin, and K. Sriroth, "Pineapple Leaf Fiber Reinforced Thermoplastic Composites: Effects of Fiber Length and Fiber Content on Their Characteristics," Journal of Applied Polymer Science, vol. 119, pp. 1952-60, 2011.
  • R. Arib, S. Sapuan, M. Ahmad, M. Paridah, and H. K. Zaman, "Mechanical Properties of Pineapple Leaf Fibre Reinforced Polypropylene Composites," Materials & Design, vol. 27, pp. 391-96, 2006.
  • M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. Ishak, et al., "A Review on Pineapple Leaves Fibre and Its Composites," International Journal of Polymer Science, vol. 2015, 2015.
  • Y. Payae and N. Lopattananon, "Adhesion of Pineapple-Leaf Fiber to Epoxy Matrix: The Role of Surface Treatments," Sonklanakarin Journal of Science and Technology, vol. 31, p. 189, 2009.
  • A. Mohanty, S. Parija, and M. Misra, "Ce (Iv)‐N‐Acetylglycine Initiated Graft Copolymerization of Acrylonitrile onto Chemically Modified Pineapple Leaf Fibers," Journal of Applied Polymer Science, vol. 60, pp. 931-37, 1996.
  • (Eylül). Other Natural Fibres. Available: http://texmin.nic.in/policy/Fibre_Policy_Sub_%20Groups_Report_dir_mg_d_20100608_6.pdf
  • M. J. M. Sunil Pardeshi, Vijay Goud. (Eylül). Extraction of Pineapple Leaf Fiber and Its Spinning : A Review. Available: http://www.fibre2fashion.com/industry-article/45/4417/extraction-of-pineapple-leaf1.asp
  • S. Dey and K. Satapathy, "A Combined Technology Package for Extraction of Pineapple Leaf Fibre-an Agrowaste, Utilization of Biomass and for Application in Textiles," National Institute of Research on Jute and Allied Fibre Technology Indian Council of Agricultural Research, Kolkata2013.
  • L. Oijala. (2012, Kasım). Fiber Watch: It’s Ripe Time to Pull out the Pineapple Leaves. Available: http://ecosalon.com/fiber-watch-its-ripe-time-to-pull-out-the-pineapple-leaves/
  • J. Bai and S. Cui, "Pretreatment of Pineapple Leaf Fiber with Bu-Gong Tea Saponin," in International Conference on Manufacturing and Engineering Technology (ICMET 2014), Sanya, China, 2014, p. 33.
  • S. Özdemir and O. Tekoğlu, "Ekolojik Tekstil Ürünlerinde Kullanılan Hammaddeler," AKDENIZ SANAT DERGİSİ, vol. 4, pp. 27-30, 2014.
  • G. YAZICIOĞLU, Pamuk Ve Diğer Bitkisel Lifler. İzmir: Tekstil Mühendisliği Bölümü Mühendislik Fakültesi, Basım Ünitesi, 1999.
  • M. A. Rahman, "Study on Modified Pineapple Leaf Fiber," Journal of Textile and Apparel, Technology and Management, vol. 7, 2011.
  • N. Reddy and Y. Yang, "Biofibers from Agricultural Byproducts for Industrial Applications," Trends in Biotechnology, vol. 23, pp. 22-27, 2005.
  • D. P. Bartholomew, R. E. Paull, and K. G. Rohrbach, The Pineapple: Botany, Production, and Uses: CABI, 2002.
  • A. Mohamed, S. Sapuan, M. Shahjahan, and A. Khalina, "Characterization of Pineapple Leaf Fibers from Selected Malaysian Cultivars," Journal of Food, Agriculture & Environment, vol. 7, pp. 235-40, 2009.
  • K. Satyanarayana, J. Guimarães, and F. Wypych, "Studies on Lignocellulosic Fibers of Brazil. Part I: Source, Production, Morphology, Properties and Applications," Composites Part A: Applied Science and Manufacturing, vol. 38, pp. 1694-709, 2007.
  • S. Bansal and P. Sodhi, "Pineapple Leaf Fibers: Eco Souvenir," Research Journal of Humanities and Social Sciences, vol. 5, pp. 141-47, 2014.
  • A. Datta, B. Samantaray, and S. Bhattacherjee, "Mechanical and Dielectric Properties of Pineapple Fibres," Journal of materials science letters, vol. 3, pp. 667-70, 1984.
  • L. Mwaikambo, "Review of the History, Properties and Application of Plant Fibres," African Journal of Science and Technology, vol. 7, p. 121, 2006.
  • S. Kalia, B. Kaith, and I. Kaur, Cellulose Fibers: Bio-and Nano-Polymer Composites: Green Chemistry and Technology. London: Springer Science & Business Media, 2011.
  • M.-L. E. Florian, D. P. Kronkright, and R. E. Norton, The Conservation of Artifacts Made from Plant Materials: Getty Publications, 1991.
  • Y. Yusof, S. A. Yahya, and A. Adam, "A New Approach for Palf Productions and Spinning System: The Role of Surface Treatments," Journal of Advanced Agricultural Technologies, vol. 1, pp. 161-64, 2014.
  • (2009, Eylül). The Pineapple. Available: https://www.daf.qld.gov.au/__data/assets/pdf_file/0007/66247/Ch1-The-Pineapple.pdf
  • N. Reddy and Y. Yang, Innovative Biofibers from Renewable Resources: Springer, 2014.
  • L. M. de Carvalho, F. M. Fernandes, and S. Zabel, "The Collection of Pineapple Fibers-Ananas Comosus (Bromeliaceae)-at the Harvard University Herbaria," Harvard Papers in Botany, vol. 14, pp. 105-09, 2009.
  • R. Heinicke and W. Gortner, "Stem Bromelain—a New Protease Preparation from Pineapple Plants," Economic Botany, vol. 11, pp. 225-34, 1957.
  • S. S. Munawar, K. Umemura, F. Tanaka, and S. Kawai, "Effects of Alkali, Mild Steam, and Chitosan Treatments on the Properties of Pineapple, Ramie, and Sansevieria Fiber Bundles," Journal of wood science, vol. 54, pp. 28-35, 2008.
  • D. Cathcart, "The Importance of Maintaining Bromeliad Imports," Florida entomologist, pp. 16-21, 1995.
  • M. A. Gardetti and S. S. Muthu, "Handbook of Sustainable Luxury Textiles and Fashion," vol. 1, ed: Springer, 2015.
  • (Kasım). Does a Pineapple Grow from a Pineapple Tree? Available: http://www.todayprimetimes.com/2015/01/does-pineapple-grow-from-pineapple-tree.html
  • (Kasım). Benefits of Pineapple. Available: http://www.donkoy.com/benefits-of-pineapple/
  • S. Ghosh, M. Sinha, S. Dey, and S. Bhaduri, "Processing of Pineapple Leaf Fibre in Cotton Machinery," Text Trends, vol. 14, 1982.
  • I. Doraiswamy and P. Chellamani, "Pineapple Leaf Fabrics," Textile Progress, vol. 24, pp. 1-37, 1993.
  • K. Satyanarayana, K. Sukumaran, P. Mukherjee, C. Pavithran, and S. Pillai, "Natural Fibre-Polymer Composites," Cement and Concrete composites, vol. 12, pp. 117-36, 1990.
  • M. S. Smole, S. Hribernik, K. S. Kleinschek, and T. Kreže, "Plant Fibres for Textile and Technical Applications," Advances in Agrophysical Research, vol. 10, pp. 369-98, 2013.
  • N. Lopattananon, K. Panawarangkul, K. Sahakaro, and B. Ellis, "Performance of Pineapple Leaf Fiber–Natural Rubber Composites: The Effect of Fiber Surface Treatments," Journal of Applied Polymer Science, vol. 102, pp. 1974-84, 2006.
  • N. Chand, R. Tiwary, and P. Rohatgi, "Bibliography Resource Structure Properties of Natural Cellulosic Fibres—an Annotated Bibliography," Journal of Materials Science, vol. 23, pp. 381-87, 1988.
  • (Kasım). From Pineapple to Puma. Available: http://www.crane.tv/pinatex
  • W. Liu, M. Misra, P. Askeland, L. T. Drzal, and A. K. Mohanty, "‘Green’composites from Soy Based Plastic and Pineapple Leaf Fiber: Fabrication and Properties Evaluation," Polymer, vol. 46, pp. 2710-21, 2005.
  • M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, "Effect of Chemical Modifications of the Pineapple Leaf Fiber Surfaces on the Interfacial and Mechanical Properties of Laminated Biocomposites," Composite Interfaces, vol. 15, pp. 169-91, 2008.
  • B. M. Cherian, A. L. Leão, S. F. de Souza, L. M. M. Costa, G. M. de Olyveira, M. Kottaisamy, et al., "Cellulose Nanocomposites with Nanofibres Isolated from Pineapple Leaf Fibers for Medical Applications," Carbohydrate Polymers, vol. 86, pp. 1790-98, 2011.
  • S. Hariharan and P. Nambisan, "Optimization of Lignin Peroxidase, Manganese Peroxidase, and Lac Production from Ganoderma Lucidum under Solid State Fermentation of Pineapple Leaf," BioResources, vol. 8, pp. 250-71, 2012.
  • P. Das, D. Nag, S. Debnath, and L. Nayak, "Machinery for Extraction and Traditional Spinning of Plant Fibres," Indian Journal of Traditional Knowledge, vol. 9, pp. 386-93, 2010.
  • M. Mert, Lif Bitkileri. Ankara: Nobel Yayın Dağıtım, 2009.
  • R. Sinclair, Textiles and Fashion: Materials, Design and Technology. Cambridge: Woodhead Publishing Limited, 2014.
  • N. Kengkhetkit and T. Amornsakchai, "Utilisation of Pineapple Leaf Waste for Plastic Reinforcement: 1. A Novel Extraction Method for Short Pineapple Leaf Fiber," Industrial Crops and Products, vol. 40, pp. 55-61, 2012.
  • P. Sureshkumar, P. Thanikaivelan, K. Phebe, K. Krishnaraj, R. Jagadeeswaran, and B. Chandrasekaran, "Investigations on Structural, Mechanical, and Thermal Properties of Pineapple Leaf Fiber-Based Fabrics and Cow Softy Leathers: An Approach toward Making Amalgamated Leather Products," Journal of Natural Fibers, vol. 9, pp. 37-50, 2012.
  • R. Kannojiya, K. Gaurav, R. Ranjan, N. Tiyer, and K. Pandey, "Extraction of Pineapple Fibres for Making Commercial Products," Journal of Environmental Research And Development Vol, vol. 7, 2013.
  • I. Doraiswamy and P. Chellamani, Pineapple-Leaf Fibres vol. 24. Manchester: The Textile Institute, 1993.
  • N. Debasis and D. Sanjoy, "A Pineapple Leaf Fibre Decorticator Assembly," India Patents, vol. 2334.
  • (Kasım). Pineapple Fiber Extraction. Available: https://commons.wikimedia.org/wiki/File:Pineapple-fiber-extraction.jpg
  • (2009, Kasım). Mutagacha. Available: http://maebird.blogspot.com.tr/2009_11_01_archive.html
  • (Kasım). Decorticator. Available: http://www.premagnetos.com/services
  • (Kasım). Decorticating Pina. Available: https://www.youtube.com/watch?v=UFGMa-33cMg
  • A. Hulle, P. Kadole, and P. Katkar, "Agave Americana Leaf Fibers," Fibers, vol. 3, pp. 64-75, 2015.
  • (2012, Kasım). Piña: Weaving Aklan’s Queen of Fibers. Available: http://langyaw.com/2012/02/23/pina-weaving-aklans-queen-of-fibers/
  • M.-f. LI, W.-w. LIAN, Y.-g. DENG, and T. HUANG, "Discussion on Technological Parameters of Pineapple Leaf Fiber Degumming," Shanghai Textile Science & Technology, vol. 4, p. 008, 2009.
  • M. Bora, C. Talukdar, and M. Talukdar, "Tensile Properties of Plant Fibres Readily Available in North-Eastern Region of India," INDIAN JOURNAL OF FIBRE AND TEXTILE RESEARCH, vol. 24, pp. 172-76, 1999.
  • E.-p. Liu, A.-p. Guo, Y.-l. Guo, H. KONG, Y.-s. WANG, X.-y. ZHANG, et al., "Study on Enzymatic Degumming of Pineapple Leaf Fiber," Journal of Textile Research, vol. 27, p. 41, 2006.
  • A. Briggs-Goode and K. Townsend, Textile Design: Principles, Advances and Applications. Cambridge: Woodhead Publishing Limited, 2011.
  • (Kasım). Piña. Available: https://en.wikipedia.org/wiki/Pi%C3%B1a
  • (2014, Kasım). P Is for Piña Cloth, One of the Most Beautiful Fabrics of Manila. Available: http://morrighansmuse.com/2014/04/18/p-is-for-pina-cloth-one-of-the-most-beautiful-fabrics-of-manila/
  • M. Lewin, Handbook of Fiber Chemistry. New York: CRC Press, 2010.
  • P. Mukherjee and K. Satyanarayana, "Structure and Properties of Some Vegetable Fibres," Journal of Materials Science, vol. 21, pp. 51-56, 1986.
  • S. Kalia and L. Avérous, Biopolymers: Biomedical and Environmental Applications vol. 70: John Wiley & Sons, 2011.
  • W. Sricharussin, P. Ree-iam, W. Phanomchoeng, and S. Poolperm, "Effect of Enzymatic Treatment on the Dyeing of Pineapple Leaf Fibres with Natural Dyes," Science Asia, vol. 35, pp. 31-36, 2009.
  • P. Ghosh and R. Gangopadhyay, "Photofunctionalization of Cellulose and Lignocellulose Fibres Using Photoactive Organic Acids," European Polymer Journal, vol. 36, pp. 625-34, 2000.
  • S. Konak, "Bamya Bitkisinden Suda Çürütme Yöntem Ile Lif Elde Edilmesi Ve Elde Edilen Lifin Çeşitli Fiziksel Kimyasal Ve Mekanik Özelliklerinin Ölçümü," Yüksek Lisans Tezi, Tekstil Mühendisliği, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli, 2014.
  • Y. Bulut and Ü. H. Erdoğan, "Selüloz Esaslı Doğal Liflerin Kompozit Üretiminde Takviye Materyali Olarak Kullanımı," Tekstil ve Mühendis, vol. 18, pp. 26-35, 2011.
  • R. Kozlowski, Handbook of Natural Fibres: Types, Properties and Factors Affecting Breeding and Cultivation. Cambridge: Woodhead Publishing Limited, 2012.
  • M. Ahmed, S. Chattopadhyay, A. Chaphekar, R. Gaikwad, and S. Dey, "Characteristics of Degummed Ramie Fibre and Its Cotton Blended Yarns," Indian Journal of Fibre & Textile Research, vol. 29, pp. 362-65, 2004.
  • S. Fakirov and D. Bhattacharyya, "Handbook of Engineering Biopolymers: Homopolymers," Blends, and Composites”, Hanser Gardner USA, 2007.
  • S. Kalia, B. Kaith, and I. Kaur, "Pretreatments of Natural Fibers and Their Application as Reinforcing Material in Polymer Composites—a Review," Polymer Engineering & Science, vol. 49, pp. 1253-72, 2009.
  • S. Mishra, A. K. Mohanty, L. T. Drzal, M. Misra, and G. Hinrichsen, "A Review on Pineapple Leaf Fibers, Sisal Fibers and Their Biocomposites," Macromolecular Materials and Engineering, vol. 289, pp. 955-74, 2004.
  • R. Samal and B. Bhuyan, "Chemical Modification of Lignocellulosic Fibers I. Functionality Changes and Graftcopolymerization of Acrylonitrile onto Pineapple Leaf Fibers; Their Characterization and Behavior," Journal of Applied Polymer Science, vol. 52, pp. 1675-85, 1994.
  • A. Kaymakcı, N. Ayrılmış, and T. Akbulut, "Dış Cephe Kaplamalarına Ekolojik Bir Yaklaşım: Ahşap Polimer Kompozitler," in 7. Ulusal Çatı & Cephe Sempozyumu İstanbul, 2014, pp. 3-4.
  • C. Py, J. J. Lacoeuilhe, and C. Teisson, The Pineapple. Cultivation and Uses: G.-P. Maisonneuve et Larose, 1987.
  • M. K. Sinha, "A Review of Processing Technology for the Utilisation of Agro-Waste Fibres," Agricultural Wastes, vol. 4, pp. 461-75, 1982.
  • R. S. Blackburn, Biodegradable and Sustainable Fibres. Cambridge: Woodhead Publishing Limited, 2005.
  • R. Samal and M. C. Ray, "Effect of Chemical Modifications on Ftir Spectra. Ii. Physicochemical Behavior of Pineapple Leaf Fiber (Palf)," Journal of Applied Polymer Science, vol. 64, pp. 2119-25, 1997.
  • J. George, S. Bhagawan, N. Prabhakaran, and S. Thomas, "Short Pineapple‐Leaf‐Fiber‐Reinforced Low‐Density Polyethylene Composites," Journal of Applied Polymer Science, vol. 57, pp. 843-54, 1995.
  • K. J. Nielson, Interior Textiles: Fabrics, Application, and Historic Style: John Wiley & Sons, 2007.
  • V. Steele, Encyclopedia of Clothing and Fashion-Vol-1 vol. 1. Detroit: Charles Scribners Sons, 2005.
  • V. Steele, Encyclopedia of Clothing and Fashion-Vol-2 vol. 2. Detroit: Charles Scribners Sons, 2005.
  • A. Azoff. (2013, Kasım). Do You Like Piña Coladas? How About Pineapple Silk? Available: http://www.heartsleevesblog.com/pineapple-silk-fashion/
  • (Kasım). Treasure in Threads: Piña Fiber Processing. Available: http://e-extension.gov.ph/elearning/course/view.php?id=76
  • (Kasım). Barong Tagalog. Available: https://en.wikipedia.org/wiki/Barong_Tagalog
  • M. A. Hermans, R. D. Sauer, S. U. Hossain, and J. D. Litvay, "Tissue Products Made from Low-Coarseness Fibers," USH1672 H, 1997.
  • (Kasım). Pineapple Fiber Fabric. Available: http://www.dbathis.com/p44/PINEAPPLE+FIBER+FABRIC/product_info.html
  • N. Talmon. (2012, Kasım). Emmy Rossum Wears an Adorable Yellow Dress Made Partly of Pineapple. Available: http://www.starpulse.com/news/Noelle_Talmon/2012/02/23/emmy_rossum_wears_an_adorable_yellow_d
  • (Kasım). Fique Pineapple Bag. Available: http://habutextiles.com/KIT-130
  • (Kasım). Pineapple Selvedge. Available: http://shop.nordstrom.com/s/naked-famous-denim-weird-guy-slim-fit-jeans-pineapple-selvedge/3646303
  • (Kasım). Patrick and Tina. Available: http://patrickandtina.weebly.com/santa-cruz.html
  • (Kasım). Pineapple Fiber (Piña) Fan with Embroidery and Calado. Available: http://www.ebuyphilippines.com/ladiesbagforexportcandystripestotebag-1-1-1-1-1-1-1-1-1-1-1-1-2.aspx
  • (Kasım). Piña Pineapple Fiber Fabric Available: http://bohohill.com/products/convertible-aladdin-unisex-pants-hindu-om-script-airy-pina-pineapple-fiber-fabric-brown?variant=2630966851
  • B. M. Cherian, A. L. Leão, S. F. de Souza, S. Thomas, L. A. Pothan, and M. Kottaisamy, "Isolation of Nanocellulose from Pineapple Leaf Fibres by Steam Explosion," Carbohydrate Polymers, vol. 81, pp. 720-25, 2010.
  • S. Hickey. (2014, Kasım). Wearable Pineapple Fibres Could Prove Sustainable Alternative to Leather. Available: http://www.theguardian.com/business/2014/dec/21/wearable-pineapple-leather-alternative
  • N. Lopattananon, Y. Payae, and M. Seadan, "Influence of Fiber Modification on Interfacial Adhesion and Mechanical Properties of Pineapple Leaf Fiber‐Epoxy Composites," Journal of Applied Polymer Science, vol. 110, pp. 433-43, 2008.
  • S. Taj, M. A. Munawar, and S. Khan, "Natural Fiber-Reinforced Polymer Composites," Proceedings-Pakistan Academy of Sciences, vol. 44, p. 129, 2007.
  • K. d. S. d. Prado and M. A. d. S. Spinacé, "Characterization of Fibers from Pineapple's Crown, Rice Husks and Cotton Textile Residues," Materials Research, vol. 18, pp. 530-37, 2015.
  • J. George, S. Bhagawan, and S. Thomas, "Improved Interactions in Chemically Modified Pineapple Leaf Fiber Reinforced Polyethylene Composites," Composite Interfaces, vol. 5, pp. 201-23, 1997.
  • J. George, S. Bhagawan, and S. Thomas, "Effects of Environment on the Properties of Low-Density Polyethylene Composites Reinforced with Pineapple-Leaf Fibre," Composites Science and Technology, vol. 58, pp. 1471-85, 1998.
  • P. Threepopnatkul, N. Kaerkitcha, and N. Athipongarporn, "Effect of Surface Treatment on Performance of Pineapple Leaf Fiber–Polycarbonate Composites," Composites Part B: Engineering, vol. 40, pp. 628-32, 2009.
  • S. Mishra, A. Mohanty, L. Drzal, M. Misra, S. Parija, S. Nayak, et al., "Studies on Mechanical Performance of Biofibre/Glass Reinforced Polyester Hybrid Composites," Composites Science and Technology, vol. 63, pp. 1377-85, 2003.
  • S. Saha, B. Das, P. Ray, S. Pandey, and K. Goswami, "Sem Studies of the Surface and Fracture Morphology of Pineapple Leaf Fibers," Textile Research Journal, vol. 60, pp. 726-31, 1990.
  • K. Panyasart, N. Chaiyut, T. Amornsakchai, and O. Santawitee, "Effect of Surface Treatment on the Properties of Pineapple Leaf Fibers Reinforced Polyamide 6 Composites," Energy Procedia, vol. 56, pp. 406-13, 2014.
  • X.-h. Huang and D.-q. Shen, "Degumming and Dyeing of Pineapple Leaf Fiber," Journal of Textile Research, vol. 27, p. 75, 2006.
  • C. Dong, Z. Lu, X. Zhang, P. Zhu, and N. Li, "The Preparation and Dyeing Properties of Pineapple Leaf Fibres Modified with a Cationic Modifier," Coloration Technology, vol. 130, pp. 260-65, 2014.
  • W. Sricharussin. (2010, Kasım). Dyeing and Finishing Pineapple Fibre Fabrics for New Value-Added Products. Available: http://www.thaiwest.su.ac.th/en/research-project-2/research-and-innovation-for-transfer-technology-to-rural-community-project/2010-2/dyeing-and-finishing-pineapple-fibre-fabrics-for-new-value-added-products/
  • D.-y. Gu and M. Li, "Study on the Pretreatment of the Pineapple Fiber/Cotton Knitted Fabrics," Textile Auxiliaries, vol. 11, p. 016, 2011.
  • W. Sricharussin, P. Ree-Iam, W. Phanomchoeng, and S. Poolperm, "Effect of Enzymatic Treatment on the Dyeing of Pineapple Leaf Fibres with Natural Dyes," Scienceasia, vol. 35, pp. 31-36, 2009.
  • M. S. Alam, G. A. Khan, and S. A. Razzaque, "Estimation of Main Constituents of Ananus Comosus (Pineapple) Leaf Fiber and Its Photo-Oxidative Degradation," Journal of Natural Fibers, vol. 6, pp. 138-50, 2009.
There are 142 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Ece Kalaycı This is me

Osman Ozan Avinç

Ahmet Bbozkurt This is me

Arzu Yavaş

Publication Date August 1, 2016
Submission Date December 14, 2015
Acceptance Date January 25, 2016
Published in Issue Year 2016

Cite

APA Kalaycı, E., Avinç, O. O., Bbozkurt, A., Yavaş, A. (2016). Sustainable textile fibers obtained from agricultural wastes: Pineapple leaf fibers. Sakarya University Journal of Science, 20(2), 203-221. https://doi.org/10.16984/saufenbilder.07521
AMA Kalaycı E, Avinç OO, Bbozkurt A, Yavaş A. Sustainable textile fibers obtained from agricultural wastes: Pineapple leaf fibers. SAUJS. August 2016;20(2):203-221. doi:10.16984/saufenbilder.07521
Chicago Kalaycı, Ece, Osman Ozan Avinç, Ahmet Bbozkurt, and Arzu Yavaş. “Sustainable Textile Fibers Obtained from Agricultural Wastes: Pineapple Leaf Fibers”. Sakarya University Journal of Science 20, no. 2 (August 2016): 203-21. https://doi.org/10.16984/saufenbilder.07521.
EndNote Kalaycı E, Avinç OO, Bbozkurt A, Yavaş A (August 1, 2016) Sustainable textile fibers obtained from agricultural wastes: Pineapple leaf fibers. Sakarya University Journal of Science 20 2 203–221.
IEEE E. Kalaycı, O. O. Avinç, A. Bbozkurt, and A. Yavaş, “Sustainable textile fibers obtained from agricultural wastes: Pineapple leaf fibers”, SAUJS, vol. 20, no. 2, pp. 203–221, 2016, doi: 10.16984/saufenbilder.07521.
ISNAD Kalaycı, Ece et al. “Sustainable Textile Fibers Obtained from Agricultural Wastes: Pineapple Leaf Fibers”. Sakarya University Journal of Science 20/2 (August 2016), 203-221. https://doi.org/10.16984/saufenbilder.07521.
JAMA Kalaycı E, Avinç OO, Bbozkurt A, Yavaş A. Sustainable textile fibers obtained from agricultural wastes: Pineapple leaf fibers. SAUJS. 2016;20:203–221.
MLA Kalaycı, Ece et al. “Sustainable Textile Fibers Obtained from Agricultural Wastes: Pineapple Leaf Fibers”. Sakarya University Journal of Science, vol. 20, no. 2, 2016, pp. 203-21, doi:10.16984/saufenbilder.07521.
Vancouver Kalaycı E, Avinç OO, Bbozkurt A, Yavaş A. Sustainable textile fibers obtained from agricultural wastes: Pineapple leaf fibers. SAUJS. 2016;20(2):203-21.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.