Research Article
BibTex RIS Cite

Betonarme kirişlerin deneysel ve teorik burulma momenti değerlerinin karşılaştırılması

Year 2017, , 899 - 906, 01.10.2017
https://doi.org/10.16984/saufenbilder.268874

Abstract

Betonarme kiriş elemanlarda etriye oranı, beton
sınıfı ve beton tipinin burulma davranışının üzerinde etkisinin deneysel olarak
incelenmesi be çalışmanın temelini oluşturmaktadır. Deneylerde beton basınç
dayanımı 20 MPa ile 40 MPa, beton tipi geleneksel beton ile kendiliğinden
yerleşen beton ve etriye aralığı 80 mm ve 100 mm çalışmanın ana parametreleri
olarak belirlendi. 12 adet normal betonlu 8 adet kendiliğinden yerleşen betonlu
250x300x1500 mm boyutlarında kiriş numunesi hazırlandı. Burulma momentine maruz
bırakılan kiriş numunelerinin burulma momenti kapasiteleri, bu değere karşılık
gelen döneme açısı, kritik burulma momenti değerleri, bu değerlere karşılık
gelen kritik dönme açıları, burulma çatlakları deneysel olarak ölçüldü. Elde
edilen deneysel burulma momenti kapasitesi sonuçları elastik, plastik ve yanal
eğilme teorileri ile karşılaştırıldı. Deneysel sonuçlara en yakın değerler
yanal eğilme teorisinde elde edildi. Kiriş numunelerinin burulma momenti
kapasitesi-dönme açısı grafikleri çizildi. Düşük etriye aralığının, yüksek
dayanımlı betonun ve beton tipi olarak kendiliğinden yerleşen betonun burulma
davranışı üzerinde olumlu bir etkiye sahip olduğu deneysel olarak bu çalışma
kapsamında belirlendi. Deneysel kritik burulma momenti değerleri ilgili
çalışmalardan elde edilen ampirik değerlerin karşılaştırılması yapıldı. 

References

  • [1] Doğangün, A., Betonarme Yapıların Hesap ve Tasarımı 2008, İstanbul Birsen Yayınevi
  • [2] Csikós, Á. and I. Hegedûs, Torsion of reinforced concrete beams. Technical University of Budapest, Department of Reinforced Concrete Structures H-1521 Budapest, 1998.
  • [3] Zhang, Y., Torsion in high strength concrete rectangular beams2002.
  • [4] TS500, TS500 Requirements for design and construction of reinforced concrete structures, 2000, Turkish Standards Institute Ankara,, Turkey.
  • [5] Hsu, T.T., Torsion of Structural Concrete-Plain Cocnrete Rectangular Sections. Special Publication, 1968. 18: p. 203-238.
  • [6] Kuyt, B., Ultımate Torsıonal Resıstance Of Rectangular Reınforced Concrete Beams. Concrete, 1968. 2(12): p. 522-&.
  • [7] Lampert, P. and B. Thürlimann, Torsionsversuche an Stahlbetonbalken. 1968.
  • [8] Valipour, H.R. and S.J. Foster, Nonlinear reinforced concrete frame element with torsion. Engineering Structures, 2010. 32(4): p. 988-1002.
  • [9] Pineaud, A., et al., Mechanical properties of high performance self-compacting concretes at room and high temperature. Construction and Building Materials, 2016. 112: p. 747-755.
  • [10] Gesoğlu, M., et al., Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash. Construction and Building Materials, 2012. 37: p. 160-170.
  • [11] Naik, M.P.P. and M. Vyawahare. Strength And Durability Investigations On Self Consolidated Concrete With Pozzolanic Filler And Inert Filler. in International Journal of Engineering Research and Technology. 2013. ESRSA Publications.
  • [12] Aydin, A.C., et al., Effects of the different atmospheric steam curing processes on the properties of self-compacting-concrete containing microsilica. Sadhana, 2015. 40(4): p. 1361-1371.
  • [13] Sadek, D.M., M.M. El-Attar, and H.A. Ali, Reusing of marble and granite powders in self-compacting concrete for sustainable development. Journal of Cleaner Production, 2016. 121: p. 19-32.
  • [14] Golafshani, E.M. and A. Ashour, Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques. Automation in Construction, 2016. 64: p. 7-19.
  • [15] Okrajnov-Bajić, R. and D. Vasović, Self-compacting concrete and its application in contemporary architectural practice. Spatium, 2009(20): p. 28-34.
  • [16] Poppe, A.-M. and G. De Schutter. Creep and shrinkage of self-compacting concrete. in First International Symposium on Design, Performance and Use of Self-Consolidating Concrete, China. 2005.
  • [17] EFNARC, S., Guidelines for self-compacting concrete. EFNARC Publication, London, UK, 2002: p. 1-32.

The comparison of the experimental and theoretical torsional moment results of reinforcement concrete beams

Year 2017, , 899 - 906, 01.10.2017
https://doi.org/10.16984/saufenbilder.268874

Abstract

The experimental investigation effect on the
torsional behavior of web spacing, concrete class and concrete type of
reinforcement concrete beams constitute basis of this work. The compressive
strength of concrete, 20 MPa and 40 MPa, the type of concrete, conventional concrete
and self-compacting concrete, web spacing of 80 mm and 100 mm, was determined
the main parameters of this work. 12 unit of conventional concrete beams and 8
unit of self-compacting concrete beams of 250x300x1500 mm was manufactured. The
torsional moment capacities and corresponding rotation angle values, the
critical torsional moment values and corresponding critical rotation angles,
torsional cracks of the beam samples that subjected to the torsion was measured
experimentally. The torsional moment capacity results that were measured
experimentally were compared with the elastic, plastic and skew-bending
theories. The most closed results were get to the skew-bending theory. The
graphic of torsional moment capacity- unit rotational angles were plotted. The
low web spacing, high concrete class and self-compacting concrete type that
have a positive effect on the torsional behavior was determined experimentally
in this study. Experimental critical torsion values were compared with empirical
values obtained from related studies.     

References

  • [1] Doğangün, A., Betonarme Yapıların Hesap ve Tasarımı 2008, İstanbul Birsen Yayınevi
  • [2] Csikós, Á. and I. Hegedûs, Torsion of reinforced concrete beams. Technical University of Budapest, Department of Reinforced Concrete Structures H-1521 Budapest, 1998.
  • [3] Zhang, Y., Torsion in high strength concrete rectangular beams2002.
  • [4] TS500, TS500 Requirements for design and construction of reinforced concrete structures, 2000, Turkish Standards Institute Ankara,, Turkey.
  • [5] Hsu, T.T., Torsion of Structural Concrete-Plain Cocnrete Rectangular Sections. Special Publication, 1968. 18: p. 203-238.
  • [6] Kuyt, B., Ultımate Torsıonal Resıstance Of Rectangular Reınforced Concrete Beams. Concrete, 1968. 2(12): p. 522-&.
  • [7] Lampert, P. and B. Thürlimann, Torsionsversuche an Stahlbetonbalken. 1968.
  • [8] Valipour, H.R. and S.J. Foster, Nonlinear reinforced concrete frame element with torsion. Engineering Structures, 2010. 32(4): p. 988-1002.
  • [9] Pineaud, A., et al., Mechanical properties of high performance self-compacting concretes at room and high temperature. Construction and Building Materials, 2016. 112: p. 747-755.
  • [10] Gesoğlu, M., et al., Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash. Construction and Building Materials, 2012. 37: p. 160-170.
  • [11] Naik, M.P.P. and M. Vyawahare. Strength And Durability Investigations On Self Consolidated Concrete With Pozzolanic Filler And Inert Filler. in International Journal of Engineering Research and Technology. 2013. ESRSA Publications.
  • [12] Aydin, A.C., et al., Effects of the different atmospheric steam curing processes on the properties of self-compacting-concrete containing microsilica. Sadhana, 2015. 40(4): p. 1361-1371.
  • [13] Sadek, D.M., M.M. El-Attar, and H.A. Ali, Reusing of marble and granite powders in self-compacting concrete for sustainable development. Journal of Cleaner Production, 2016. 121: p. 19-32.
  • [14] Golafshani, E.M. and A. Ashour, Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques. Automation in Construction, 2016. 64: p. 7-19.
  • [15] Okrajnov-Bajić, R. and D. Vasović, Self-compacting concrete and its application in contemporary architectural practice. Spatium, 2009(20): p. 28-34.
  • [16] Poppe, A.-M. and G. De Schutter. Creep and shrinkage of self-compacting concrete. in First International Symposium on Design, Performance and Use of Self-Consolidating Concrete, China. 2005.
  • [17] EFNARC, S., Guidelines for self-compacting concrete. EFNARC Publication, London, UK, 2002: p. 1-32.
There are 17 citations in total.

Details

Subjects Civil Engineering
Journal Section Research Articles
Authors

Abdulkadir Cuneyt Aydın

Barış Bayrak

Publication Date October 1, 2017
Submission Date November 25, 2016
Acceptance Date June 1, 2017
Published in Issue Year 2017

Cite

APA Aydın, A. C., & Bayrak, B. (2017). The comparison of the experimental and theoretical torsional moment results of reinforcement concrete beams. Sakarya University Journal of Science, 21(5), 899-906. https://doi.org/10.16984/saufenbilder.268874
AMA Aydın AC, Bayrak B. The comparison of the experimental and theoretical torsional moment results of reinforcement concrete beams. SAUJS. October 2017;21(5):899-906. doi:10.16984/saufenbilder.268874
Chicago Aydın, Abdulkadir Cuneyt, and Barış Bayrak. “The Comparison of the Experimental and Theoretical Torsional Moment Results of Reinforcement Concrete Beams”. Sakarya University Journal of Science 21, no. 5 (October 2017): 899-906. https://doi.org/10.16984/saufenbilder.268874.
EndNote Aydın AC, Bayrak B (October 1, 2017) The comparison of the experimental and theoretical torsional moment results of reinforcement concrete beams. Sakarya University Journal of Science 21 5 899–906.
IEEE A. C. Aydın and B. Bayrak, “The comparison of the experimental and theoretical torsional moment results of reinforcement concrete beams”, SAUJS, vol. 21, no. 5, pp. 899–906, 2017, doi: 10.16984/saufenbilder.268874.
ISNAD Aydın, Abdulkadir Cuneyt - Bayrak, Barış. “The Comparison of the Experimental and Theoretical Torsional Moment Results of Reinforcement Concrete Beams”. Sakarya University Journal of Science 21/5 (October 2017), 899-906. https://doi.org/10.16984/saufenbilder.268874.
JAMA Aydın AC, Bayrak B. The comparison of the experimental and theoretical torsional moment results of reinforcement concrete beams. SAUJS. 2017;21:899–906.
MLA Aydın, Abdulkadir Cuneyt and Barış Bayrak. “The Comparison of the Experimental and Theoretical Torsional Moment Results of Reinforcement Concrete Beams”. Sakarya University Journal of Science, vol. 21, no. 5, 2017, pp. 899-06, doi:10.16984/saufenbilder.268874.
Vancouver Aydın AC, Bayrak B. The comparison of the experimental and theoretical torsional moment results of reinforcement concrete beams. SAUJS. 2017;21(5):899-906.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.