Research Article
BibTex RIS Cite

4-Piridinetiyonamid ile Zn(II) kompleksinin spektroskopik özelliklerinin deneysel ve teorik olarak incelenmesi

Year 2016, , 489 - 495, 01.12.2016
https://doi.org/10.16984/saufenbilder.66137

Abstract

Zn(II) iyonunun yeni bir kompleksi olan [ZnCl2(peta)2] [peta: 4-Pyridinethioamide] sentezledi. Yapısı tek kristal X-ışınları kırınım yöntemi ve FT-IR spektroskopisi kullanılarak aydınlatıldı. Zn(II) merkezi etrafındaki geometrinin bozulmuş tetrahedron olduğu belirlendi. Moleküller arası N–H∙∙∙Cl, N–H∙∙∙S ve C–H∙∙∙S hidrojen bağlarının kristal paketlenmeyi dengelediği görüldü. Yapının moleküler modellemesi Hartree-Fock (HF) ve yoğunluk fonksiyonel teorisi (YFT) ile 6-311++G (d, p) baz seti kullanarak yapıldı. Deneysel olarak elde edilmiş titreşim frekansları teorik olarak hesaplanan değerlerle karşılaştırıldı. Çözücü ortamındaki elektronik geçiler zamana bağlı yoğunluk fonksiyonel teorisine sürekli polarizasyon modeli (IEF-PCM) uygulanarak hesaplandı.  

References

  • A.H. Bhatt, M.H. Parekh, K.A. Parikh, A.R. Parikh, Synthesis of pyrazolines and cyanopyridines as potential antimicrobial agents, J. Ind. Chem Soc. 40 (2001) 57-61.
  • G.L. Patrick, O.S. Kinsmar, Synthesis and antifungal activity of novel aza-D-homosteroids , hydroisoquinolines, pyridines and dihydropyridines, J.Med. Chem. 31(1996) 615–624.
  • O.H. Hishmat, F.M.A. Galil, D.S. Farrag, Synthesis and Antimicrobial activity of New Benzofuranylpyridine derivatives, Pharmazie 45 (1990) 793–795.
  • R.Doshi, P. Kagthara, H. Parekh, Synthesis and biological evaluation of some novel isoxazoles and cyanopyridines, a new class of potential anti-tubercular agents, Ind. J. Chem. 38 (1999) 348–352.
  • V. Balachandran, S. Lalitha, S. Rajeswari, Rotational isomers, density functional theory, vibrational spectroscopic studies, thermodynamic functions, NBO and HOMO-LUMO analyses of 2,6 Bis(chloromethyl)pyridine, Spectrochim. Acta Part A 97 (2012) 1023–1032.
  • I. Novak, L. Klasinc, S.P. McGlynn, Electronic structure and tautomerism of thioamides, J. Electron Spect. Relat. Phenom. 209(2016) 62–65.
  • V. Klimesova, M. Svoboda, K. Waisser, M.Pour, J.Kaustova, New pyridine derivates as potential antimicrobial agents, II Farmaco 54 (1999) 666-672.
  • G.M. Sheldric, SHELXS97, SHELXL97, University of Gottingen, Germany, 1997.
  • K. Brandenburg, DIAMOND Demonstrated Version, Crystal Impact GbR, Bonn, Germany, 2005.
  • Gaussian 09, Revision A.1, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT, 2009.
  • GaussView, Version 5. Roy Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission, KS, (2009).
  • A. D. Becke, Density-functional exchange approximation with correct asmtotic behavior, Physical Review A, 38(6) (1988) 3098-3100.
  • C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvatti correlation-energy formula into a functional of electron density, Phys. Rev. B 37 (1988) 785-789.
  • M.H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004.
  • J. Qin, N. Su, C. Dai, C. Yang, D. Liu, M. W. Day, B. Wu, C. Chen, A tetrahedral coordination compound for second-order nonlinear optics: synthesis, crystal structure and SHG of Zn(2-NH2 py)2 Cl2 , Polyhedron 18 (1999) 3461-3464.
  • B. Čobeljic, A. Pevec, I. Turel, M. Swart, D. Mitić, M. Milenković, I. Marković, M. Jovanović, D. Sladić, M. Jeremić, K. Andelković, Synthesis, characterization, DFT calculations and biological activity of derivatives of 3-acetylpyridine and the zinc(II) complex with the condensation product of 3-acetylpyridine and semicarbazide, Inorg. Chim. Acta 404 (2013) 5-12.
  • Y. Liang, X. Xiao, L. Meng, D. Xiao, D. Zhao, L. Shen, J. Fang, H. Fujiwara, Synthesis, structure, and properties of coordination complexes based on zinc halides and TTF-pyridyl ligand, Synthetic Metals 203 (2015) 255-260.
  • S.Choi, S. H. Ahn, S. Nayap, H. Lee, Synthesis and structural characterisation of tetrahedral zinc(II) and trigonal bipyramidal cadmium(II) complexes containing N0-cyclohexyl substituted N,N-bispyrazolyl ligand, Inorg. Chim. Acta 435 (2015) 313-319.
  • M. Azam, S. I.Al-Resayes, R. Pallepogu, F. Firdaus, M. Shakir, Mononuclear Bis(3-aminoquinoline)Zn(II) complexes: Synthesis and structural characterization, Journal of Saudi Chemical Society 20 (2016) 357-369.
  • A. Jablonska-Wawrzycka, P. Rogala, G. Czerwonka, M. Hodorowicz, K. Stadnicka, Zinc(II) complexes with heterocyclic ether, acid and amide. Crystal structure, spectral, thermal and antibacterial activity studies, J. Mol. Struct. 1105 (2016) 357-369.
  • B. Čobeljic, A. Pevec, I. Turel, M. Swart, D. Mitić, M. Milenković, I. Marković, M. Jovanović, D. Sladić, M. Jeremić, K. Andelković, Synthesis, characterization, DFT calculations and biological activity of derivatives of 3-acetylpyridine and the zinc(II) complex with the condensation product of 3-acetylpyridine and semicarbazide, Inorg. Chim. Acta 404 (2013) 5-12.
  • Y. Liang, X. Xiao, L. Meng, D. Xiao, D. Zhao, L. Shen, J. Fang, H. Fujiwara, Synthesis, structure, and properties of coordination complexes based on zinc halides and TTF-pyridyl ligand, Synthetic Metals 203 (2015) 255-260.
  • R. Novotná, Z. Trávníćek, I. Popa, Synthesis and characterization of the first zinc(II) complexes involving kinetin and its derivatives: X-ray structures of 2-chloro-N6-furfuryl-9-isopropyladenine and [Zn(kinetin)2Cl2]CH3OH, Inorg. Chim. Acta 363 (2010) 2071-2079.
  • S.I. Gorelsky, SWizard Program Revision 4.5, University of Ottawa, Ottawa, 2010.
  • H. Tanak, A. A. Agar,O. Büyükgüngör, Experimental (XRD, FT-IR and UV-Vis) and theoretical modeling studies of Schiff base (E)-N'-((5-nitrothiophen-2-yl)methylene)-2-phenoxyaniline, Spectrochim. Acta A 118 (2014) 672.
  • C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York, (1963), 249.
  • Ö.Tamer, B. S. Arslan, D. Avcı, M. Nebioğlu, Y. Atalay, B. Çoşut, Synthesis, molecular structure, spectral analysis and nonlinear optical studies on 4-(4-bromophenyl)-1-tert-butyl-3-methyl-1H-pyrazol-5- amine: A combined experimental and DFT approach, J. Mol. Struc. 1106 (2016) 89-97.
  • H. Vural, Computational studies on structure and spectroscopic properties of 4-(Boc-amino) pyridine, J. Mol. Struc. 1102 (2015) 261-266.
  • R. Wysokinski, D. Michalska, D.C. Bienko, S. Ilakiamani, N. Sundaraganesan , K. Ramalingam, Density functional study on the molecular structure, infrared and Raman spectra, and vibrational assignment for 4-thiocarbamoylpyridine, J. Mol. Struct. 791 (2006) 70–76.
  • E. Akalin, S. Akyuz, Experimental and theoretical vibrational spectroscopic investigation of Zn(II) halide complexes of 3-aminopyridine and 3-chloropyridine, J. Mol. Struct. 993 (2011) 390–396.

Experimental and theoretical investigation of spectroscopic properties of Zn(II) complex with 4-Pyridinethioamide

Year 2016, , 489 - 495, 01.12.2016
https://doi.org/10.16984/saufenbilder.66137

Abstract

A novel compound of zinc (II) ion, [ZnCl2(peta)2] [peta: 4-Pyridinethioamide] was synthesized and characterized by XRD and FT-IR spectroscopy. The geometry around the Zn (II) center can be described as distorted tetrahedron. The crystal packing was stabilized by N–H∙∙∙Cl, N–H∙∙∙S and C–H∙∙∙S intermolecular hydrogen bonds. Molecular modeling of the Zn(II) complex was done by using the Hartree-Fock (HF) and Density Functional Theory (DFT) with 6-311++G (d, p) basis set. The calculated vibrational frequencies were compared with the corresponding experimental data. The time dependent DFT (TD-DFT) method by applying the integral equation formalism-polarized continuum model (IEF-PCM) was performed to investigate the electronic transitions in water and DMSO solvent.

References

  • A.H. Bhatt, M.H. Parekh, K.A. Parikh, A.R. Parikh, Synthesis of pyrazolines and cyanopyridines as potential antimicrobial agents, J. Ind. Chem Soc. 40 (2001) 57-61.
  • G.L. Patrick, O.S. Kinsmar, Synthesis and antifungal activity of novel aza-D-homosteroids , hydroisoquinolines, pyridines and dihydropyridines, J.Med. Chem. 31(1996) 615–624.
  • O.H. Hishmat, F.M.A. Galil, D.S. Farrag, Synthesis and Antimicrobial activity of New Benzofuranylpyridine derivatives, Pharmazie 45 (1990) 793–795.
  • R.Doshi, P. Kagthara, H. Parekh, Synthesis and biological evaluation of some novel isoxazoles and cyanopyridines, a new class of potential anti-tubercular agents, Ind. J. Chem. 38 (1999) 348–352.
  • V. Balachandran, S. Lalitha, S. Rajeswari, Rotational isomers, density functional theory, vibrational spectroscopic studies, thermodynamic functions, NBO and HOMO-LUMO analyses of 2,6 Bis(chloromethyl)pyridine, Spectrochim. Acta Part A 97 (2012) 1023–1032.
  • I. Novak, L. Klasinc, S.P. McGlynn, Electronic structure and tautomerism of thioamides, J. Electron Spect. Relat. Phenom. 209(2016) 62–65.
  • V. Klimesova, M. Svoboda, K. Waisser, M.Pour, J.Kaustova, New pyridine derivates as potential antimicrobial agents, II Farmaco 54 (1999) 666-672.
  • G.M. Sheldric, SHELXS97, SHELXL97, University of Gottingen, Germany, 1997.
  • K. Brandenburg, DIAMOND Demonstrated Version, Crystal Impact GbR, Bonn, Germany, 2005.
  • Gaussian 09, Revision A.1, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT, 2009.
  • GaussView, Version 5. Roy Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission, KS, (2009).
  • A. D. Becke, Density-functional exchange approximation with correct asmtotic behavior, Physical Review A, 38(6) (1988) 3098-3100.
  • C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvatti correlation-energy formula into a functional of electron density, Phys. Rev. B 37 (1988) 785-789.
  • M.H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004.
  • J. Qin, N. Su, C. Dai, C. Yang, D. Liu, M. W. Day, B. Wu, C. Chen, A tetrahedral coordination compound for second-order nonlinear optics: synthesis, crystal structure and SHG of Zn(2-NH2 py)2 Cl2 , Polyhedron 18 (1999) 3461-3464.
  • B. Čobeljic, A. Pevec, I. Turel, M. Swart, D. Mitić, M. Milenković, I. Marković, M. Jovanović, D. Sladić, M. Jeremić, K. Andelković, Synthesis, characterization, DFT calculations and biological activity of derivatives of 3-acetylpyridine and the zinc(II) complex with the condensation product of 3-acetylpyridine and semicarbazide, Inorg. Chim. Acta 404 (2013) 5-12.
  • Y. Liang, X. Xiao, L. Meng, D. Xiao, D. Zhao, L. Shen, J. Fang, H. Fujiwara, Synthesis, structure, and properties of coordination complexes based on zinc halides and TTF-pyridyl ligand, Synthetic Metals 203 (2015) 255-260.
  • S.Choi, S. H. Ahn, S. Nayap, H. Lee, Synthesis and structural characterisation of tetrahedral zinc(II) and trigonal bipyramidal cadmium(II) complexes containing N0-cyclohexyl substituted N,N-bispyrazolyl ligand, Inorg. Chim. Acta 435 (2015) 313-319.
  • M. Azam, S. I.Al-Resayes, R. Pallepogu, F. Firdaus, M. Shakir, Mononuclear Bis(3-aminoquinoline)Zn(II) complexes: Synthesis and structural characterization, Journal of Saudi Chemical Society 20 (2016) 357-369.
  • A. Jablonska-Wawrzycka, P. Rogala, G. Czerwonka, M. Hodorowicz, K. Stadnicka, Zinc(II) complexes with heterocyclic ether, acid and amide. Crystal structure, spectral, thermal and antibacterial activity studies, J. Mol. Struct. 1105 (2016) 357-369.
  • B. Čobeljic, A. Pevec, I. Turel, M. Swart, D. Mitić, M. Milenković, I. Marković, M. Jovanović, D. Sladić, M. Jeremić, K. Andelković, Synthesis, characterization, DFT calculations and biological activity of derivatives of 3-acetylpyridine and the zinc(II) complex with the condensation product of 3-acetylpyridine and semicarbazide, Inorg. Chim. Acta 404 (2013) 5-12.
  • Y. Liang, X. Xiao, L. Meng, D. Xiao, D. Zhao, L. Shen, J. Fang, H. Fujiwara, Synthesis, structure, and properties of coordination complexes based on zinc halides and TTF-pyridyl ligand, Synthetic Metals 203 (2015) 255-260.
  • R. Novotná, Z. Trávníćek, I. Popa, Synthesis and characterization of the first zinc(II) complexes involving kinetin and its derivatives: X-ray structures of 2-chloro-N6-furfuryl-9-isopropyladenine and [Zn(kinetin)2Cl2]CH3OH, Inorg. Chim. Acta 363 (2010) 2071-2079.
  • S.I. Gorelsky, SWizard Program Revision 4.5, University of Ottawa, Ottawa, 2010.
  • H. Tanak, A. A. Agar,O. Büyükgüngör, Experimental (XRD, FT-IR and UV-Vis) and theoretical modeling studies of Schiff base (E)-N'-((5-nitrothiophen-2-yl)methylene)-2-phenoxyaniline, Spectrochim. Acta A 118 (2014) 672.
  • C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York, (1963), 249.
  • Ö.Tamer, B. S. Arslan, D. Avcı, M. Nebioğlu, Y. Atalay, B. Çoşut, Synthesis, molecular structure, spectral analysis and nonlinear optical studies on 4-(4-bromophenyl)-1-tert-butyl-3-methyl-1H-pyrazol-5- amine: A combined experimental and DFT approach, J. Mol. Struc. 1106 (2016) 89-97.
  • H. Vural, Computational studies on structure and spectroscopic properties of 4-(Boc-amino) pyridine, J. Mol. Struc. 1102 (2015) 261-266.
  • R. Wysokinski, D. Michalska, D.C. Bienko, S. Ilakiamani, N. Sundaraganesan , K. Ramalingam, Density functional study on the molecular structure, infrared and Raman spectra, and vibrational assignment for 4-thiocarbamoylpyridine, J. Mol. Struct. 791 (2006) 70–76.
  • E. Akalin, S. Akyuz, Experimental and theoretical vibrational spectroscopic investigation of Zn(II) halide complexes of 3-aminopyridine and 3-chloropyridine, J. Mol. Struct. 993 (2011) 390–396.
There are 30 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Hatice Vural This is me

Publication Date December 1, 2016
Submission Date May 18, 2016
Acceptance Date July 19, 2016
Published in Issue Year 2016

Cite

APA Vural, H. (2016). Experimental and theoretical investigation of spectroscopic properties of Zn(II) complex with 4-Pyridinethioamide. Sakarya University Journal of Science, 20(3), 489-495. https://doi.org/10.16984/saufenbilder.66137
AMA Vural H. Experimental and theoretical investigation of spectroscopic properties of Zn(II) complex with 4-Pyridinethioamide. SAUJS. November 2016;20(3):489-495. doi:10.16984/saufenbilder.66137
Chicago Vural, Hatice. “Experimental and Theoretical Investigation of Spectroscopic Properties of Zn(II) Complex With 4-Pyridinethioamide”. Sakarya University Journal of Science 20, no. 3 (November 2016): 489-95. https://doi.org/10.16984/saufenbilder.66137.
EndNote Vural H (November 1, 2016) Experimental and theoretical investigation of spectroscopic properties of Zn(II) complex with 4-Pyridinethioamide. Sakarya University Journal of Science 20 3 489–495.
IEEE H. Vural, “Experimental and theoretical investigation of spectroscopic properties of Zn(II) complex with 4-Pyridinethioamide”, SAUJS, vol. 20, no. 3, pp. 489–495, 2016, doi: 10.16984/saufenbilder.66137.
ISNAD Vural, Hatice. “Experimental and Theoretical Investigation of Spectroscopic Properties of Zn(II) Complex With 4-Pyridinethioamide”. Sakarya University Journal of Science 20/3 (November 2016), 489-495. https://doi.org/10.16984/saufenbilder.66137.
JAMA Vural H. Experimental and theoretical investigation of spectroscopic properties of Zn(II) complex with 4-Pyridinethioamide. SAUJS. 2016;20:489–495.
MLA Vural, Hatice. “Experimental and Theoretical Investigation of Spectroscopic Properties of Zn(II) Complex With 4-Pyridinethioamide”. Sakarya University Journal of Science, vol. 20, no. 3, 2016, pp. 489-95, doi:10.16984/saufenbilder.66137.
Vancouver Vural H. Experimental and theoretical investigation of spectroscopic properties of Zn(II) complex with 4-Pyridinethioamide. SAUJS. 2016;20(3):489-95.