Stability Analysis of the Automatic Voltage Regulation System with PI Controller
Year 2017,
, 698 - 705, 01.08.2017
Mahmut Özdemir
,
Vedat Çelik
Abstract
The system voltage is one of the
most important parameters, which determines the power quality. The stability of
the system voltage is critical for the power system. This paper investigates
the stability analysis of the automatic voltage regulation (AVR) system
controlled by a PI controller related to the controller gains. For this
purpose, a graphical-based technique called as the stability boundary locus
method is proposed in the paper to obtain the stable parameters space of PI
controller gains. Stability of closed region computed on parameters space
determines from roots of characteristic equation of AVR system. The time-domain
simulations are performed in Matlab/Simulink environment to validate the
theoretical results.
References
- Gozde H, Taplamacioglu MC. Automatic generation control application with craziness based particle swarm optimization in a thermal power system. International Journal of Electrical Power Energy Systems 2011; 33: 8-16.
- Gozde H, Taplamacioglu MC. Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. Journal of the Franklin Institute 2011; 348: 1927-1946.
- Eke I, Taplamacioglu MC, Kocaarslan I. Design of robust power system stabilizer based on artificial bee colony algorithm. Journal of The Faculty of Engineering and Architecture of Gazi University 2011; 26: 683-690.
- Özdemir MT, Öztürk D, Eke İ, Çelik V, Lee, KY. Tuning of Optimal Classical and Fractional Order PID Parameters for Automatic Generation Control Based on the Bacterial Swarm Optimization. IFAC-PapersOnLine 2015; 48, 501-506.
- Mc Granaghan MF, Mueller DR, Samotyj MJ. Voltage sags in industrial systems. IEEE Transactions on industry applications 1993; 29: 397–403.
- Demirören A, Zeynelgil L. Elektrik enerji sistemlerinin kararlılığı, kontrolü ve çalışması. Birsen Yayınevi, 2004
- Sedaghati A. A PI controller based on gain-scheduling for synchronous generator. Turkish journal of electrical engineering & computer sciences 2006; 14: 241-251.
- Estakhrouieh MR, Gharaveisi AA. Optimal iterative learning control design for generator voltage regulation system. Turkish Journal of Electrical Engineering & Computer Sciences 2013; 21.Sup:1909-1919.
- Juarez EE, Hernandez A. An analytical approach for stochastic assessment of balanced and unbalanced voltage sags in large systems. IEEE Transactions on Power Delivery 2006; 21: 1493–1500.
- Aboul-Ela ME, Sallam AA, McCalley JD, Fouad AA. Damping controller design for power system oscillations using global signals. IEEE Transactions on Power Systems 1996; 11: 767–773.
- Atlaş İH. Güç Uyartım Sistemlerinin Denetiminde Bulanık Mantık, Otomasyon Dergisi 2000; 9: 123–128.
- Aström KJ, Hägglund T. PID controllers: Theory, design, and tuning. Instrument Society of America Research Triangle Park, NC, 1995.
- Ayasun S, Eminoğlu U, Sönmez Ş. Computation of stability delay margin of time delayed generator excitation control system with a stabilizing transformer, Math. Prob. Eng., Vol. 2014, No. 2, pp. 1–10, May 2014.
- Gomes JrS, Martins N, Portela C. Computing small-signal stability boundaries for large-scale power systems, IEEE Transactions on. Power Systems 2003; 18: 747–752.
- Tan N, Kaya I, Yeroglu C, Atherton DP. Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Conversion and Management 2006; 47: 3045–3058.
- Tan N, Atherton DP. Design of stabilizing PI and PID controllers. International Journal of Systems Science 2006; 37: 543–554.
- Li Y, Sheng A, Wang Y. Robust Control Design for Time-delay Systems with Parameter Uncertainties Using the PID Controller. Control and Decision 2004; 19: 1178-1182.
- Tan N. Computation of stabilizing PI and PID controllers for processes with time delay. ISA transactions 2005;44: 213–223.
- Sonmez S, Ayasun S. Stability Region in the Parameter Space of PI Controller for a Single-Area Load Frequency Control System With Time Delay. IEEE Transactions on Power Systems 2016; 31: 829 - 830
- Sheldrake AL. Handbook of Electrical Engineering: For Practitioners in the Oil, Gas and Petrochemical Industry. Wiley. 2003.
- IEEE Standard Definitions for Excitation Systems for Synchronous Machines. ANSI/IEEE Std. 421.1-1986. The Institute of EEE, New-York, NY, USA,1986.
- Trebincevic I, Malik OP. Computer models for representation of digital-based excitation systems. Commentary. IEEE transactions on energy conversion 1996; 11: 607-615.
- IEEE Recommended Practice for Exitacion System Models for Power System Stability Studies, IEEE Std. 421. 5-1992, IEEE, New-York, NY, USA, 1992.
- Hamamci SE. An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers. IEEE Transactions On Automatic Control 2007; 52:1964–1969.
- C. Report, “Computer Representation of Excitation Systems,” IEEE Trans. Power Appar. Syst., vol. PAS-87, no. 6, pp. 1460–1464, 1968.
- PES, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, vol. 2005, no. April. 2006.
- S. E. Hamamci, “An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers,” IEEE Trans. Automat. Contr., vol. 52, no. 10, pp. 1964–1969, 2007.
PI Kontrolörlü Otomatik Gerilim Regülasyon Sisteminin Kararlılık Analizi
Year 2017,
, 698 - 705, 01.08.2017
Mahmut Özdemir
,
Vedat Çelik
Abstract
Elektrik güç sistemlerinde güç kalitesine etki eden en önemli parametre sistem gerilimidir. Sistem geriliminin kararlılığı güç sistemi açısından çok kritik öneme sahiptir. Bu çalışma, otomatik gerilim regülasyon (OGR) sisteminde PI kazançlarının değerlerine bağlı olarak sistem kararlılığını analiz etmiştir. Bu amaçla, kararlı PI parametre uzayını elde etmek için grafik tabanlı olan kararlılık sınır eğrisi metodu önerilmiştir. OGR sisteminin karakteristik denkleminin köklerine göre kararlılık kapalı bölgesi hesaplanmıştır. Teorik olarak elde edilen bu bölge, Matlab/Simulink ortamında gerçekleştirilen zaman domain benzetimleri ile doğrulanmıştır.
References
- Gozde H, Taplamacioglu MC. Automatic generation control application with craziness based particle swarm optimization in a thermal power system. International Journal of Electrical Power Energy Systems 2011; 33: 8-16.
- Gozde H, Taplamacioglu MC. Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. Journal of the Franklin Institute 2011; 348: 1927-1946.
- Eke I, Taplamacioglu MC, Kocaarslan I. Design of robust power system stabilizer based on artificial bee colony algorithm. Journal of The Faculty of Engineering and Architecture of Gazi University 2011; 26: 683-690.
- Özdemir MT, Öztürk D, Eke İ, Çelik V, Lee, KY. Tuning of Optimal Classical and Fractional Order PID Parameters for Automatic Generation Control Based on the Bacterial Swarm Optimization. IFAC-PapersOnLine 2015; 48, 501-506.
- Mc Granaghan MF, Mueller DR, Samotyj MJ. Voltage sags in industrial systems. IEEE Transactions on industry applications 1993; 29: 397–403.
- Demirören A, Zeynelgil L. Elektrik enerji sistemlerinin kararlılığı, kontrolü ve çalışması. Birsen Yayınevi, 2004
- Sedaghati A. A PI controller based on gain-scheduling for synchronous generator. Turkish journal of electrical engineering & computer sciences 2006; 14: 241-251.
- Estakhrouieh MR, Gharaveisi AA. Optimal iterative learning control design for generator voltage regulation system. Turkish Journal of Electrical Engineering & Computer Sciences 2013; 21.Sup:1909-1919.
- Juarez EE, Hernandez A. An analytical approach for stochastic assessment of balanced and unbalanced voltage sags in large systems. IEEE Transactions on Power Delivery 2006; 21: 1493–1500.
- Aboul-Ela ME, Sallam AA, McCalley JD, Fouad AA. Damping controller design for power system oscillations using global signals. IEEE Transactions on Power Systems 1996; 11: 767–773.
- Atlaş İH. Güç Uyartım Sistemlerinin Denetiminde Bulanık Mantık, Otomasyon Dergisi 2000; 9: 123–128.
- Aström KJ, Hägglund T. PID controllers: Theory, design, and tuning. Instrument Society of America Research Triangle Park, NC, 1995.
- Ayasun S, Eminoğlu U, Sönmez Ş. Computation of stability delay margin of time delayed generator excitation control system with a stabilizing transformer, Math. Prob. Eng., Vol. 2014, No. 2, pp. 1–10, May 2014.
- Gomes JrS, Martins N, Portela C. Computing small-signal stability boundaries for large-scale power systems, IEEE Transactions on. Power Systems 2003; 18: 747–752.
- Tan N, Kaya I, Yeroglu C, Atherton DP. Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Conversion and Management 2006; 47: 3045–3058.
- Tan N, Atherton DP. Design of stabilizing PI and PID controllers. International Journal of Systems Science 2006; 37: 543–554.
- Li Y, Sheng A, Wang Y. Robust Control Design for Time-delay Systems with Parameter Uncertainties Using the PID Controller. Control and Decision 2004; 19: 1178-1182.
- Tan N. Computation of stabilizing PI and PID controllers for processes with time delay. ISA transactions 2005;44: 213–223.
- Sonmez S, Ayasun S. Stability Region in the Parameter Space of PI Controller for a Single-Area Load Frequency Control System With Time Delay. IEEE Transactions on Power Systems 2016; 31: 829 - 830
- Sheldrake AL. Handbook of Electrical Engineering: For Practitioners in the Oil, Gas and Petrochemical Industry. Wiley. 2003.
- IEEE Standard Definitions for Excitation Systems for Synchronous Machines. ANSI/IEEE Std. 421.1-1986. The Institute of EEE, New-York, NY, USA,1986.
- Trebincevic I, Malik OP. Computer models for representation of digital-based excitation systems. Commentary. IEEE transactions on energy conversion 1996; 11: 607-615.
- IEEE Recommended Practice for Exitacion System Models for Power System Stability Studies, IEEE Std. 421. 5-1992, IEEE, New-York, NY, USA, 1992.
- Hamamci SE. An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers. IEEE Transactions On Automatic Control 2007; 52:1964–1969.
- C. Report, “Computer Representation of Excitation Systems,” IEEE Trans. Power Appar. Syst., vol. PAS-87, no. 6, pp. 1460–1464, 1968.
- PES, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, vol. 2005, no. April. 2006.
- S. E. Hamamci, “An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers,” IEEE Trans. Automat. Contr., vol. 52, no. 10, pp. 1964–1969, 2007.