Research Article
BibTex RIS Cite

a new amperometric biosensor based on tissue homogenate of Boletus edulis for ethanol determination

Year 2017, , 1266 - 1277, 01.12.2017
https://doi.org/10.16984/saufenbilder.271304

Abstract

In this study, an amperometric
biosensor based on tissue for ethanol determination was constructed using
tissue homogenate of Boletus edulis
which is an edible mushroom. For this purpose, tissue homogenate of mushroom
was immobilized onto the glassy carbon electrode using gelatin and glutaraldehyde
which is cross-linking agent. Effects of pH and temperature on biosensor
response were investigated. The amounts of tissue homogenate, amounts of
gelatin and glutaraldehyde concentration were determined for optimization of
immobilization conditions. The linear range for ethanol was 5.0-150 mM and the
detection limit was 2.5 mM, of biosensor based on B. edulis tissue prepared under optimal conditions. Also, in
repeatability studies, variation coefficient (C.V.) and standard deviation
(S.D.) were calculated as 0.7212 % and ±0.7209, respectively. The biosensor
retained 76.3% of its original activity after 20 days of storage at +4 °C. The
prepared biosensor was used for analysis of ethanol samples with known
concentrations.

References

  • [1] M. Boujtita, M. Chapleau, N. El Murr, «Biosensors for analysis of ethanol in food: effect liquid of the pasting», Analytica Chimica Acta, 319, pp. 91-96, 1996.
  • [2] M. Boujtita, J. P. Hart, R. Pittson, «Development of a disposable ethanol biosensor based on a chemically modified screen-printed electrode coated with alcohol oxidase for the analysis of beer,» Biosensors & Bioelectronics, 15, pp. 257–263, 2000.
  • [3] H. Liden, A. R. Vijayakumar, L. Gorton, G. Marko-Varga, «Rapid alcohol determination in plasma and urine by column liquid chromatography with biosensor detection,» Journal of Pharmaceutical and Biomedical Analysis, 17 pp. 1111-1128, 1998.
  • [4] A. M. Azevedo, D. M. F. Prazeres, J. M. S. Cabral, L. P. Fonseca, «Ethanol biosensors based on alcohol oxidase, Rewiev,» Biosensors and Bioelectronics, 21, pp. 235–247, 2005.
  • [5] W. Künnecke, R. D. Schmid, «Gas-diffusion dilution flow-injection method for the determination of ethanol in beverages without sample pretreatment,» Analytica Chimica Acta, 234, pp. 213-220.
  • [6] W. H. Chan, A.W. M. Lee, P. X. Cai, «Differential-pulse polarographic microdetermination of ethanol and its application to beer analysis.» Analyst, 117, pp. 1509-1517, 1992.
  • [7] J. Mohns, W. Kunnecke, «Flow analysis with membrane separation and time based sampling for ethanol determination in beer and wine,» Analytica Chimica Acta, 305, pp. 241-247.
  • [8] A. Perez-Ponce, S. Garrigues, M. Guardia, «Vapour generation-Fourier transform infrared direct determination of ethanol in alcoholic beverages,» Analyst, 121, pp. 923-928, 1996.
  • [9] D. J. Tarnowski, C. Korzeniewski, «Amperometric detection with membranebased sampling for percent-level determinations of ethanol,» Analytica Chimica Acta, 332, pp. 111-121, 1996.
  • [10] A. Tangerman, «Highly sensitive gas chromatographic analysis of ethanol in whole blood, serum, urine, and fecal supernatants by the direct injection method,» Clinical Chemistry, 43, pp.1003-1009, 1997.
  • [11] D. G. McCarver-May, L. Durisin, «An accurate, automated, simultaneous gaschromatographic headspace measurement of whole-blood ethanol and acetaldehyde for human in vivo studies,» Journal of Analytical Toxicology, 21, pp. 134-141, 1997.
  • [12] R. Vonach, B. Lendl, R. Kellner, «High performance liquid chromatography (HPLC) with real time Fourier transform infrared (FTIR) detection for the determination of carbohydrates, alcohols and organic acids in wines,» Journal of Chromatography A, 824, pp. 159-167, 1998.
  • [13] T. Yarita, R. Nakajima, S. Otsuka, T. Ihara, A. Takatsu, M. Shibukawa, «Determination of ethanol in alcoholic beverages by high-performance liquid chromatography-flame ionization detection using pure water as mobile phase,» Journal of Chromatography A, 976, pp. 387-391, 2002.
  • [14] H. Yuan, M. M. F. Choi, W. H. Chan, L. Zhou, K. Wang, «Dual-light source excitation for mode-filtered light detection,» Analytica Chimica Acta, 481, pp. 301-310, 2003.
  • [15] S. Apers, E. V. Meenen, L. Pieters, A. Vlietinck, «Quality control of liquid herbal drug preparations: ethanol content and test on methanol and 2- propanol,» Journal of Pharmaceutical and Biomedical Analysis, 33, pp. 529-537, 2003.
  • [16] L. S. Mendes, F. C. C. Oliveira, P. A. Z Suarez, J. C. Rubim, «Determination of ethanol in fuel ethanol and beverages by Fourier-transform (FT)-near-infra-red and FT Raman spectrometries,» Analytica Chimica Acta, 493, pp. 219-231, 2003.
  • [17] G. Wen, Z. Li, M. M. F. Choi, «Detection of ethanol in food: A new biosensor based on bacteria,» Journal of Food Engineering, 118, pp. 56-61, 2013.
  • [18] G. G. Guilbault, B. Danielsson, C. F. Mandenlus, K. Mosbach, «Enzyme electrode and thermistor probes for determination of alcohols with alcohol oxidase,» Analytical Chemistry, 55, pp.1582-1585, 1983.
  • [19] L. V. Shkotova, A. P. Soldatkin, M. V. Gonchar, W. Schuhmann, S. V. Dzyadevych, «Amperometric biosensor for ethanol detection based on alcohol oxidase immobilized within electrochemically deposited Resydrol film,» Materials Science and Engineering: C, 26, pp. 411-414, 2006.
  • [20] H. B. Yildiz, L. Toppare, «Biosensing approach for alcohol determination using immobilized alcohol oxidase,» Biosensors and Bioelectronics, 21, pp. 2306-2310, 2006.
  • [21] K. Johansson, G. J. Petterson, L. Gorton, G. Marko-Varga, E. Csoregi, «Reagentless amperometric biosensor for alcohol detection in column liquid chromatography based on co-immobilized peroxidase and alcohol oxidase in carbon paste,» Journal of Biotechnology, 31, pp. 301-316, 1993.
  • [22] A. R. Vijayakumar, E. Csoregi, A. Heller, L. Gorton, «Alcohol biosensor based on coupled oxidase–peroxidase system,» Analytica Chimica Acta, 327, pp. 223-234, 1996.
  • [23] C. -X. Cai, K.H. Xue, Y.-M. Zhou, H.Yang, «Amperometric biosensor for ethanol based on immobilization of alcohol dehydrogenase on a nickel hexacyanoferrate modified microband gold electrode,» Talanta, 44, pp.339-347, 1997.
  • [24] M. Niculescu, T. Erichsen, V. Sukharev, Z. Kerenyi, E. Csöregi, W. Schuhmann, «A quinohemoprotein alcohol dehydrogenase based reagentless amperometric biosensor for ethanol monitoring during wine fermentation,» Analytica Chimica Acta, 463, pp. 39-51, 2002.
  • [25] M. Niculescu, R. Mieliauskiene, V. Laurinavicius, B. Csöregi, « Simultaneous detection of ethanol, glucose and glycerol in wines using pyrroloquinoline quinone dependent dehydrogenases based biosensors,» Food Chemistry, 82, pp. 481-489, 2003.
  • [26] E. Akyilmaz, E. Dinckaya, «A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determination in serum,» Talanta, 53, pp. 505-509, 2000.
  • [27] S. Topcu, M. K. Sezginturk, E. Dinckaya, «Evaluation of a new biosensor-based mushroom (Agaricus bisporus) tissue homogenate: investigation of certain phenolic compounds and some inhibitor effects,» Biosensors and Bioelectronics, 20, pp. 592–597, 2004.
  • [28] H. M. Ozcan, A. Sagıroglu, «A novel amperometric biosensor based on banana peel (Musa cavendish) tissue homogenate for determination of phenolic compounds,» Artificial Cells, Blood Substitutes, and Biotechnology, 38, pp. 208-214, 2010.
  • [29] N. C. Sekar, L. Ge, S. A. M. Shaeghc, S. H. Ngc, S. N. Tana, «A mediated turnip tissue paper-based amperometric hydrogen peroxide biosensor,» Sensors and Actuators B, 210 pp.336–342, 2015.
  • [30] M. K. Sezginturk, E. Dinckaya, «A novel amperometric biosensor based on spinach (Spinacia oleracea) tissue homogenate for urinary oxalate determination,» Talanta, 59, pp. 545-551, 2003.
  • [31] M. K. Sezginturk, E. Dinckaya, «Direct determination of sulfite in food samples by a biosensor based on plant tissue homogenate,» Talanta, 65, pp. 998-1002, 2005.
  • [32] L. Qiao, L. Jiao, G. Pang, J. Xie, «A novel pungency biosensor prepared with fixing taste-bud tissue of rats,» Biosensors and Bioelectronics, 68 pp. 454–461, 2015.
  • [33] A. Vizzini, A. Mello, S. Ghignone, C. Sechi, P. Ruiu, P. Bonfante, «Boletus edulis complex: from phylogenetic relationships to specific primers, » Pagine di Micologia 30, pp. 49–52, 2008.
  • [34] G. J. Lubrano, M. H. Faridnia, G. Palleschi, G. G. Guilbault, «Amperometric alcohol electrode with extended linearity and reduced interferences,» Analytical Biochemistry, 198-1 pp.97-103, 1991.
  • [35] N. G. Patel, K. Meier, K. Cammann, G. C. Chemnitius, «Screen printed biosensors using different alcohol oxidases,» Sensors and Actuators B: Chemical, 75 (1–2), pp. 101–110, 2001.
  • [36] A. Curulli, F. Valentini, S. Orlanduci, M. L. Terranova, G. Palleschi, «Pt based enzyme electrode probes assembled with Prussian Blue and conducting polymer nanostructures,» Biosensors and Bioelectronics, 20 (6), pp. 1223–1232, 2004.
  • [37] P. Goswami, S. S. R. Chinnadayyala, M. Chakraborty, A.K. Kumar, A. Kakoti, «An overview on alcohol oxidases and their potential applications,» Applied Microbiology and Biotechnology, 97 pp. 4259–4275, 2013.
  • [38] E. Akyilmaz E. Dinckaya, «An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol,» Biosensors and Bioelectronics, 20, 1263–1269, 2005.

Etanol tayini İçin Boletus edulis doku homojenatı temelli yeni bir amperometrik biyosensör

Year 2017, , 1266 - 1277, 01.12.2017
https://doi.org/10.16984/saufenbilder.271304

Abstract

Bu çalışmada, yenilebilir bir mantar olan Boletus edulis’in doku homojenatı
kullanılarak, etanol tayini için doku temelli amperometrik bir biyosensör
geliştirildi. Bu amaçla; mantar doku homojenatı, jelatin ve çapraz bağlayıcı
ajan glutaraldehit yardımıyla camsı karbon çalışma elektrotu üzerine immobilize
edildi. Biyosensör cevabı üzerine pH ve sıcaklığın etkisi araştırıldı.
İmmobilizasyon koşullarının optimizasyonu için; doku homojenatı miktarı,
jelatin miktarı ve glutaraldehit konsantrasyonu belirlendi. Optimum koşullarda
hazırlanan
B. edulis doku temelli
biyosensörün etanol için doğrusal tayin aralığı, 5.0–150 mM ve tayin sınırı,
2.5 mM olarak bulundu. Ayrıca, biyosensörün tekrarlanabilirlik çalışmaları
sonucunda, varyasyon katsayısı (V.K.) ve standart sapma (S.S.) değerleri
sırasıyla % 0.7212 ve ±0.7209 (n=10) olarak hesaplandı. Biyosensörün depo
kararlılığı incelendi ve +4 °C’deki depolamanın 20. gününde aktivitesinin %
76.3’ünün koruduğu gözlendi. Hazırlanan biyosensör, etanol derişimi bilinen
örneklerin analizi için kullanıldı.
 

References

  • [1] M. Boujtita, M. Chapleau, N. El Murr, «Biosensors for analysis of ethanol in food: effect liquid of the pasting», Analytica Chimica Acta, 319, pp. 91-96, 1996.
  • [2] M. Boujtita, J. P. Hart, R. Pittson, «Development of a disposable ethanol biosensor based on a chemically modified screen-printed electrode coated with alcohol oxidase for the analysis of beer,» Biosensors & Bioelectronics, 15, pp. 257–263, 2000.
  • [3] H. Liden, A. R. Vijayakumar, L. Gorton, G. Marko-Varga, «Rapid alcohol determination in plasma and urine by column liquid chromatography with biosensor detection,» Journal of Pharmaceutical and Biomedical Analysis, 17 pp. 1111-1128, 1998.
  • [4] A. M. Azevedo, D. M. F. Prazeres, J. M. S. Cabral, L. P. Fonseca, «Ethanol biosensors based on alcohol oxidase, Rewiev,» Biosensors and Bioelectronics, 21, pp. 235–247, 2005.
  • [5] W. Künnecke, R. D. Schmid, «Gas-diffusion dilution flow-injection method for the determination of ethanol in beverages without sample pretreatment,» Analytica Chimica Acta, 234, pp. 213-220.
  • [6] W. H. Chan, A.W. M. Lee, P. X. Cai, «Differential-pulse polarographic microdetermination of ethanol and its application to beer analysis.» Analyst, 117, pp. 1509-1517, 1992.
  • [7] J. Mohns, W. Kunnecke, «Flow analysis with membrane separation and time based sampling for ethanol determination in beer and wine,» Analytica Chimica Acta, 305, pp. 241-247.
  • [8] A. Perez-Ponce, S. Garrigues, M. Guardia, «Vapour generation-Fourier transform infrared direct determination of ethanol in alcoholic beverages,» Analyst, 121, pp. 923-928, 1996.
  • [9] D. J. Tarnowski, C. Korzeniewski, «Amperometric detection with membranebased sampling for percent-level determinations of ethanol,» Analytica Chimica Acta, 332, pp. 111-121, 1996.
  • [10] A. Tangerman, «Highly sensitive gas chromatographic analysis of ethanol in whole blood, serum, urine, and fecal supernatants by the direct injection method,» Clinical Chemistry, 43, pp.1003-1009, 1997.
  • [11] D. G. McCarver-May, L. Durisin, «An accurate, automated, simultaneous gaschromatographic headspace measurement of whole-blood ethanol and acetaldehyde for human in vivo studies,» Journal of Analytical Toxicology, 21, pp. 134-141, 1997.
  • [12] R. Vonach, B. Lendl, R. Kellner, «High performance liquid chromatography (HPLC) with real time Fourier transform infrared (FTIR) detection for the determination of carbohydrates, alcohols and organic acids in wines,» Journal of Chromatography A, 824, pp. 159-167, 1998.
  • [13] T. Yarita, R. Nakajima, S. Otsuka, T. Ihara, A. Takatsu, M. Shibukawa, «Determination of ethanol in alcoholic beverages by high-performance liquid chromatography-flame ionization detection using pure water as mobile phase,» Journal of Chromatography A, 976, pp. 387-391, 2002.
  • [14] H. Yuan, M. M. F. Choi, W. H. Chan, L. Zhou, K. Wang, «Dual-light source excitation for mode-filtered light detection,» Analytica Chimica Acta, 481, pp. 301-310, 2003.
  • [15] S. Apers, E. V. Meenen, L. Pieters, A. Vlietinck, «Quality control of liquid herbal drug preparations: ethanol content and test on methanol and 2- propanol,» Journal of Pharmaceutical and Biomedical Analysis, 33, pp. 529-537, 2003.
  • [16] L. S. Mendes, F. C. C. Oliveira, P. A. Z Suarez, J. C. Rubim, «Determination of ethanol in fuel ethanol and beverages by Fourier-transform (FT)-near-infra-red and FT Raman spectrometries,» Analytica Chimica Acta, 493, pp. 219-231, 2003.
  • [17] G. Wen, Z. Li, M. M. F. Choi, «Detection of ethanol in food: A new biosensor based on bacteria,» Journal of Food Engineering, 118, pp. 56-61, 2013.
  • [18] G. G. Guilbault, B. Danielsson, C. F. Mandenlus, K. Mosbach, «Enzyme electrode and thermistor probes for determination of alcohols with alcohol oxidase,» Analytical Chemistry, 55, pp.1582-1585, 1983.
  • [19] L. V. Shkotova, A. P. Soldatkin, M. V. Gonchar, W. Schuhmann, S. V. Dzyadevych, «Amperometric biosensor for ethanol detection based on alcohol oxidase immobilized within electrochemically deposited Resydrol film,» Materials Science and Engineering: C, 26, pp. 411-414, 2006.
  • [20] H. B. Yildiz, L. Toppare, «Biosensing approach for alcohol determination using immobilized alcohol oxidase,» Biosensors and Bioelectronics, 21, pp. 2306-2310, 2006.
  • [21] K. Johansson, G. J. Petterson, L. Gorton, G. Marko-Varga, E. Csoregi, «Reagentless amperometric biosensor for alcohol detection in column liquid chromatography based on co-immobilized peroxidase and alcohol oxidase in carbon paste,» Journal of Biotechnology, 31, pp. 301-316, 1993.
  • [22] A. R. Vijayakumar, E. Csoregi, A. Heller, L. Gorton, «Alcohol biosensor based on coupled oxidase–peroxidase system,» Analytica Chimica Acta, 327, pp. 223-234, 1996.
  • [23] C. -X. Cai, K.H. Xue, Y.-M. Zhou, H.Yang, «Amperometric biosensor for ethanol based on immobilization of alcohol dehydrogenase on a nickel hexacyanoferrate modified microband gold electrode,» Talanta, 44, pp.339-347, 1997.
  • [24] M. Niculescu, T. Erichsen, V. Sukharev, Z. Kerenyi, E. Csöregi, W. Schuhmann, «A quinohemoprotein alcohol dehydrogenase based reagentless amperometric biosensor for ethanol monitoring during wine fermentation,» Analytica Chimica Acta, 463, pp. 39-51, 2002.
  • [25] M. Niculescu, R. Mieliauskiene, V. Laurinavicius, B. Csöregi, « Simultaneous detection of ethanol, glucose and glycerol in wines using pyrroloquinoline quinone dependent dehydrogenases based biosensors,» Food Chemistry, 82, pp. 481-489, 2003.
  • [26] E. Akyilmaz, E. Dinckaya, «A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determination in serum,» Talanta, 53, pp. 505-509, 2000.
  • [27] S. Topcu, M. K. Sezginturk, E. Dinckaya, «Evaluation of a new biosensor-based mushroom (Agaricus bisporus) tissue homogenate: investigation of certain phenolic compounds and some inhibitor effects,» Biosensors and Bioelectronics, 20, pp. 592–597, 2004.
  • [28] H. M. Ozcan, A. Sagıroglu, «A novel amperometric biosensor based on banana peel (Musa cavendish) tissue homogenate for determination of phenolic compounds,» Artificial Cells, Blood Substitutes, and Biotechnology, 38, pp. 208-214, 2010.
  • [29] N. C. Sekar, L. Ge, S. A. M. Shaeghc, S. H. Ngc, S. N. Tana, «A mediated turnip tissue paper-based amperometric hydrogen peroxide biosensor,» Sensors and Actuators B, 210 pp.336–342, 2015.
  • [30] M. K. Sezginturk, E. Dinckaya, «A novel amperometric biosensor based on spinach (Spinacia oleracea) tissue homogenate for urinary oxalate determination,» Talanta, 59, pp. 545-551, 2003.
  • [31] M. K. Sezginturk, E. Dinckaya, «Direct determination of sulfite in food samples by a biosensor based on plant tissue homogenate,» Talanta, 65, pp. 998-1002, 2005.
  • [32] L. Qiao, L. Jiao, G. Pang, J. Xie, «A novel pungency biosensor prepared with fixing taste-bud tissue of rats,» Biosensors and Bioelectronics, 68 pp. 454–461, 2015.
  • [33] A. Vizzini, A. Mello, S. Ghignone, C. Sechi, P. Ruiu, P. Bonfante, «Boletus edulis complex: from phylogenetic relationships to specific primers, » Pagine di Micologia 30, pp. 49–52, 2008.
  • [34] G. J. Lubrano, M. H. Faridnia, G. Palleschi, G. G. Guilbault, «Amperometric alcohol electrode with extended linearity and reduced interferences,» Analytical Biochemistry, 198-1 pp.97-103, 1991.
  • [35] N. G. Patel, K. Meier, K. Cammann, G. C. Chemnitius, «Screen printed biosensors using different alcohol oxidases,» Sensors and Actuators B: Chemical, 75 (1–2), pp. 101–110, 2001.
  • [36] A. Curulli, F. Valentini, S. Orlanduci, M. L. Terranova, G. Palleschi, «Pt based enzyme electrode probes assembled with Prussian Blue and conducting polymer nanostructures,» Biosensors and Bioelectronics, 20 (6), pp. 1223–1232, 2004.
  • [37] P. Goswami, S. S. R. Chinnadayyala, M. Chakraborty, A.K. Kumar, A. Kakoti, «An overview on alcohol oxidases and their potential applications,» Applied Microbiology and Biotechnology, 97 pp. 4259–4275, 2013.
  • [38] E. Akyilmaz E. Dinckaya, «An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol,» Biosensors and Bioelectronics, 20, 1263–1269, 2005.
There are 38 citations in total.

Details

Subjects Chemical Engineering
Journal Section Research Articles
Authors

Didem Tuncay

Hakkı Mevlüt Özcan This is me

Hülya Yağar

Publication Date December 1, 2017
Submission Date December 2, 2016
Acceptance Date July 1, 2017
Published in Issue Year 2017

Cite

APA Tuncay, D., Özcan, H. M., & Yağar, H. (2017). a new amperometric biosensor based on tissue homogenate of Boletus edulis for ethanol determination. Sakarya University Journal of Science, 21(6), 1266-1277. https://doi.org/10.16984/saufenbilder.271304
AMA Tuncay D, Özcan HM, Yağar H. a new amperometric biosensor based on tissue homogenate of Boletus edulis for ethanol determination. SAUJS. December 2017;21(6):1266-1277. doi:10.16984/saufenbilder.271304
Chicago Tuncay, Didem, Hakkı Mevlüt Özcan, and Hülya Yağar. “a New Amperometric Biosensor Based on Tissue Homogenate of Boletus Edulis for Ethanol Determination”. Sakarya University Journal of Science 21, no. 6 (December 2017): 1266-77. https://doi.org/10.16984/saufenbilder.271304.
EndNote Tuncay D, Özcan HM, Yağar H (December 1, 2017) a new amperometric biosensor based on tissue homogenate of Boletus edulis for ethanol determination. Sakarya University Journal of Science 21 6 1266–1277.
IEEE D. Tuncay, H. M. Özcan, and H. Yağar, “a new amperometric biosensor based on tissue homogenate of Boletus edulis for ethanol determination”, SAUJS, vol. 21, no. 6, pp. 1266–1277, 2017, doi: 10.16984/saufenbilder.271304.
ISNAD Tuncay, Didem et al. “a New Amperometric Biosensor Based on Tissue Homogenate of Boletus Edulis for Ethanol Determination”. Sakarya University Journal of Science 21/6 (December 2017), 1266-1277. https://doi.org/10.16984/saufenbilder.271304.
JAMA Tuncay D, Özcan HM, Yağar H. a new amperometric biosensor based on tissue homogenate of Boletus edulis for ethanol determination. SAUJS. 2017;21:1266–1277.
MLA Tuncay, Didem et al. “a New Amperometric Biosensor Based on Tissue Homogenate of Boletus Edulis for Ethanol Determination”. Sakarya University Journal of Science, vol. 21, no. 6, 2017, pp. 1266-77, doi:10.16984/saufenbilder.271304.
Vancouver Tuncay D, Özcan HM, Yağar H. a new amperometric biosensor based on tissue homogenate of Boletus edulis for ethanol determination. SAUJS. 2017;21(6):1266-77.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.