Research Article
BibTex RIS Cite

Farklı metotlar ile sürekli enerji aralığında toplam foton etkileşimi için farklı tipteki malzemelerin etkin atom numarası ve elektron yoğunluklarının hesaplanması

Year 2017, , 314 - 323, 01.06.2017
https://doi.org/10.16984/saufenbilder.283266

Abstract

Etkin atom numarası (Zeff) ve elektron yoğunluğu (Neff) teknik ve endüstriyel uygulamalarda, radyasyon zırhlama
tasarımında, soğurma dozu ve foton çoğalma faktörü hesaplamalarında çoklu elementli bir malzemenin radyasyona
tepkisini karakterize etmek için kullanılan uygun parametrelerdir. Dolayısıyla, bu parametreleri tartışmasız bir şekilde
belirlemek için doğru metodu seçmek çok önemlidir. Bu çalışmada, farklı tipteki malzemelerin etkin atom numarası
ve elektron yoğunlukları 1 keV - 100 GeV enerji aralığında toplam foton etkileşimi için doğrudan ve interpolasyon
metotları kullanılarak hesaplanmıştır. Ayrıca, metotların uyumluluğu ve uyumsuzlukları tartışılmış ve sonuçlardan,
farklı enerji bölgelerinde malzemeler için hesaplamak için kullanılan metotlar arasında önemli farklılıklar
gözlenmiştir.
  

References

  • [1] G.J. Hine, “The effective atomic numbers of materials for various gamma interactions”, Physics Review, 85, 725–737, 1952.
  • [2] S.R. Manohara, S.M. Hanagodimath, K.S. Thind and L. Gerward, “On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV”, Nucl Instrum. Methods B, 266, 3906-3912, 2008.
  • [3] M. Kurudirek, M. Büyükyıldız, Y. Özdemir, “Effective atomic number study of various alloys for total photon interaction in the energy region of 1 keV-100 GeV”, Nucl. Instrum. Methods A, 613, 251-256, 2010.
  • [4] M. Kurudirek, “Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications”, Radiation Physics and Chemistry, 102, 139-146, 2014.
  • [5] T. Singh, P. Kaur, P.S. Singh, “A study of photon interaction parameters in some commonly used solvents”, J. Radiol. Prot, 27, 79–85, 2007.
  • [6] M. Kurudirek, M. Aygun, and S.Z. Erzeneoglu, “Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions”, Appl. Radiat. Isot, 68, 1006–1011, 2010.
  • [7] O. Içelli, S.Z. Erzenoğlu, R. Boncukoğlu, “Determination of molecular, atomic, electronic cross- sections and effective atomic number of some boron compounds and TSW”, Nucl. Instrum. Methods B, 266, 3226–3230, 2008.
  • [8] I. Han, L. Demir, “Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies”, Nucl. Instrum. Methods B, 267, 3-8, 2009.
  • [9] J. Kaewkhao, J. Laopaiboon, W. Chewpraditkul, “Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy”, JQSRT, 109, 1260-1265, 2008.
  • [10] I. Akkurt, “Effective atomic and electron numbers of some steels at different Energies”, Ann. Nucl. Energy, 36, 1702-1705, 2009.
  • [11] I. Akkurt, A.M. El-Khayatt, “Effective atomic number and electron density of marble concrete”, J. Radioanal. Nucl. Chem., 295, 633-638, 2013.
  • [12] S. Gowda, S. Krishnaveni, T. Yashoda, T.K. Umesh, R. Gowda, “Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds”, Pramana J. Phys, 63, 529-541, 2004.
  • [13] S. Gowda, S. Krishnaveni, R. Gowda, “Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30-1333 keV”, Nucl. Instrum. Methods B, 239, 361-369, 2005.
  • [14] O. Içelli, Z. Yalçin, M. Okutan, R. Boncukçuoglu , A. Sen, “The determination of the total mass attenuation coefficients and the effective atomic numbers for concentrated colemanite and Emet colemanite clay”, Ann. Nucl. Energy, 38, 2079-2085, 2011.
  • [15] Y. Elmahroug, B. Tellili, C. Souga, “Determination of total mass attenuation coefficients, Effective atomic numbers and electron densities for different shielding materials”, Ann. Nucl. Energy, 75, 268-274, 2015.
  • [16] L. Demir L, I. Han, “Mass atternuation coefficients, effective atomic numbers and electron densities of undoped and differently doped GaAs and InP crystals”, Ann. Nucl. Energy, 36, 869-873, 2009.
  • [17] S.R. Manohara, S.M. Hanagodimath. L. Gerward, “The effective atomic numbers of some biomolecules calculated by two methods: A comparative study”, Med. Phys., 36, 137-141, 2009.
  • [18] Atomic weights of the elements, IUPAC, 2007. The table is based on the 2005 table at Pure Appl. Chem., 78, 2051–2066 (2006) with 2007 changes to the values for lutetium, molybdenum, nickel, ytterbium and zinc. <http://www.chem.qmul.ac.uk/iupac/AtWt/>.
  • [19] L. Gerward, N. Guilbert, K.B. Jensen. H. Levring, “X-ray absorption in matter. Reengineering XCOM”, Radiat.Phys. Chem., 60, 23-24, 2001.
  • [20] L. Gerward, N. Guilbert, K.B. Jensen. H. Levring, “WinXCom- a program for calculating X-ray attenuation coefficients”, Radiat.Phys. Chem., 71, 653-654, 2004.
  • [21] K.S. Mann, A. Rani, M.S. Heer, “Shielding behaviors of some polymer and plastic materials for gamma-rays”, Radiat.Phys. Chem., 106, 247-254, 2015.
  • [22] M. Tapan, Z. Yalçın, O. İçelli, H. Kara, S. Orak, A. Özvan, T. Depeci, “Effect of physical, chemical and electro kinetic properties of pumice samples on radiation shielding properties of pumice material”, Ann. Nucl. Energy, 65, 290-298, 2014.

Calculation of effective atomic numbers and electron densities of different types of material for total photon interaction in the continuous energy region via different methods

Year 2017, , 314 - 323, 01.06.2017
https://doi.org/10.16984/saufenbilder.283266

Abstract

Effective atomic number (Zeff) and electron density (Neff) are convenient parameters used to characterise the radiation
response of a multi-element material in the technical and industrial applications, radiation shielding design, absorbed
dose and build-up factor calculations. Thus, it is very significant to choose accurate method to determine these
parameters unambiguously. In the present study, effective atomic numbers and electron densities of different types of
materials have been calculated by using a direct method and an interpolation method for total photon interaction in the
energy region of 1 keV to 100 GeV. In addition, agreements and disagreements of the used methods have been
discussed, and from the results, significant variations have been observed between the methods used to compute for
the materials in the different energy regions.
  

References

  • [1] G.J. Hine, “The effective atomic numbers of materials for various gamma interactions”, Physics Review, 85, 725–737, 1952.
  • [2] S.R. Manohara, S.M. Hanagodimath, K.S. Thind and L. Gerward, “On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV”, Nucl Instrum. Methods B, 266, 3906-3912, 2008.
  • [3] M. Kurudirek, M. Büyükyıldız, Y. Özdemir, “Effective atomic number study of various alloys for total photon interaction in the energy region of 1 keV-100 GeV”, Nucl. Instrum. Methods A, 613, 251-256, 2010.
  • [4] M. Kurudirek, “Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications”, Radiation Physics and Chemistry, 102, 139-146, 2014.
  • [5] T. Singh, P. Kaur, P.S. Singh, “A study of photon interaction parameters in some commonly used solvents”, J. Radiol. Prot, 27, 79–85, 2007.
  • [6] M. Kurudirek, M. Aygun, and S.Z. Erzeneoglu, “Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions”, Appl. Radiat. Isot, 68, 1006–1011, 2010.
  • [7] O. Içelli, S.Z. Erzenoğlu, R. Boncukoğlu, “Determination of molecular, atomic, electronic cross- sections and effective atomic number of some boron compounds and TSW”, Nucl. Instrum. Methods B, 266, 3226–3230, 2008.
  • [8] I. Han, L. Demir, “Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies”, Nucl. Instrum. Methods B, 267, 3-8, 2009.
  • [9] J. Kaewkhao, J. Laopaiboon, W. Chewpraditkul, “Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy”, JQSRT, 109, 1260-1265, 2008.
  • [10] I. Akkurt, “Effective atomic and electron numbers of some steels at different Energies”, Ann. Nucl. Energy, 36, 1702-1705, 2009.
  • [11] I. Akkurt, A.M. El-Khayatt, “Effective atomic number and electron density of marble concrete”, J. Radioanal. Nucl. Chem., 295, 633-638, 2013.
  • [12] S. Gowda, S. Krishnaveni, T. Yashoda, T.K. Umesh, R. Gowda, “Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds”, Pramana J. Phys, 63, 529-541, 2004.
  • [13] S. Gowda, S. Krishnaveni, R. Gowda, “Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30-1333 keV”, Nucl. Instrum. Methods B, 239, 361-369, 2005.
  • [14] O. Içelli, Z. Yalçin, M. Okutan, R. Boncukçuoglu , A. Sen, “The determination of the total mass attenuation coefficients and the effective atomic numbers for concentrated colemanite and Emet colemanite clay”, Ann. Nucl. Energy, 38, 2079-2085, 2011.
  • [15] Y. Elmahroug, B. Tellili, C. Souga, “Determination of total mass attenuation coefficients, Effective atomic numbers and electron densities for different shielding materials”, Ann. Nucl. Energy, 75, 268-274, 2015.
  • [16] L. Demir L, I. Han, “Mass atternuation coefficients, effective atomic numbers and electron densities of undoped and differently doped GaAs and InP crystals”, Ann. Nucl. Energy, 36, 869-873, 2009.
  • [17] S.R. Manohara, S.M. Hanagodimath. L. Gerward, “The effective atomic numbers of some biomolecules calculated by two methods: A comparative study”, Med. Phys., 36, 137-141, 2009.
  • [18] Atomic weights of the elements, IUPAC, 2007. The table is based on the 2005 table at Pure Appl. Chem., 78, 2051–2066 (2006) with 2007 changes to the values for lutetium, molybdenum, nickel, ytterbium and zinc. <http://www.chem.qmul.ac.uk/iupac/AtWt/>.
  • [19] L. Gerward, N. Guilbert, K.B. Jensen. H. Levring, “X-ray absorption in matter. Reengineering XCOM”, Radiat.Phys. Chem., 60, 23-24, 2001.
  • [20] L. Gerward, N. Guilbert, K.B. Jensen. H. Levring, “WinXCom- a program for calculating X-ray attenuation coefficients”, Radiat.Phys. Chem., 71, 653-654, 2004.
  • [21] K.S. Mann, A. Rani, M.S. Heer, “Shielding behaviors of some polymer and plastic materials for gamma-rays”, Radiat.Phys. Chem., 106, 247-254, 2015.
  • [22] M. Tapan, Z. Yalçın, O. İçelli, H. Kara, S. Orak, A. Özvan, T. Depeci, “Effect of physical, chemical and electro kinetic properties of pumice samples on radiation shielding properties of pumice material”, Ann. Nucl. Energy, 65, 290-298, 2014.
There are 22 citations in total.

Details

Subjects Electrical Engineering
Journal Section Research Articles
Authors

Mehmet Büyükyıldız This is me

Publication Date June 1, 2017
Submission Date January 11, 2016
Acceptance Date November 1, 2016
Published in Issue Year 2017

Cite

APA Büyükyıldız, M. (2017). Calculation of effective atomic numbers and electron densities of different types of material for total photon interaction in the continuous energy region via different methods. Sakarya University Journal of Science, 21(3), 314-323. https://doi.org/10.16984/saufenbilder.283266
AMA Büyükyıldız M. Calculation of effective atomic numbers and electron densities of different types of material for total photon interaction in the continuous energy region via different methods. SAUJS. June 2017;21(3):314-323. doi:10.16984/saufenbilder.283266
Chicago Büyükyıldız, Mehmet. “Calculation of Effective Atomic Numbers and Electron Densities of Different Types of Material for Total Photon Interaction in the Continuous Energy Region via Different Methods”. Sakarya University Journal of Science 21, no. 3 (June 2017): 314-23. https://doi.org/10.16984/saufenbilder.283266.
EndNote Büyükyıldız M (June 1, 2017) Calculation of effective atomic numbers and electron densities of different types of material for total photon interaction in the continuous energy region via different methods. Sakarya University Journal of Science 21 3 314–323.
IEEE M. Büyükyıldız, “Calculation of effective atomic numbers and electron densities of different types of material for total photon interaction in the continuous energy region via different methods”, SAUJS, vol. 21, no. 3, pp. 314–323, 2017, doi: 10.16984/saufenbilder.283266.
ISNAD Büyükyıldız, Mehmet. “Calculation of Effective Atomic Numbers and Electron Densities of Different Types of Material for Total Photon Interaction in the Continuous Energy Region via Different Methods”. Sakarya University Journal of Science 21/3 (June 2017), 314-323. https://doi.org/10.16984/saufenbilder.283266.
JAMA Büyükyıldız M. Calculation of effective atomic numbers and electron densities of different types of material for total photon interaction in the continuous energy region via different methods. SAUJS. 2017;21:314–323.
MLA Büyükyıldız, Mehmet. “Calculation of Effective Atomic Numbers and Electron Densities of Different Types of Material for Total Photon Interaction in the Continuous Energy Region via Different Methods”. Sakarya University Journal of Science, vol. 21, no. 3, 2017, pp. 314-23, doi:10.16984/saufenbilder.283266.
Vancouver Büyükyıldız M. Calculation of effective atomic numbers and electron densities of different types of material for total photon interaction in the continuous energy region via different methods. SAUJS. 2017;21(3):314-23.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.