Bu çalışmada, yüksek sıcaklıktaki termoelektrik jeneratör uygulamaları için Ca2.8Pr0.2Co4O9 tozları sol-jel metodu ile sentezlenmiş, tozların ısıl ve yapısal karakterizasyonu sistematik olarak incelenmiştir. Kalsinasyon işlemi için, tozların uygun ısıl rejimlerinin belirlenmesinde Diferansiyel Termal Analiz-Termogravimetri (DTA-TG) kullanılmıştır. Orta sıcaklık ürünlerinin reaksiyon türü ve kimyasal yapısı Fourier Dönüşümlü Kızılötesi Spektrometresi (FTIR) ile tanımlanmıştır. Tozların yapısal özellikleri X-Işınları Kırınımı (XRD) ile gerçekleştirilmiş ve tozların içerisinde bulunan elementlerin kimyasal kompozisyonunun ve deneysel formülünün belirlenmesinde X-Işınları Fotoelektron Spektroskopisi (XPS) kullanılmıştır. Faz spektrumuna bakıldığında Ca2.8Pr0.2Co4O9'in 2θ piklerinin tipik Ca3Co4O9 pikleri ve literatürle uyuştuğu görülmektedir. Numunelerin Seebeck katsayıları Ca2.8Pr0.2Co4O9'in literatür değerlerine yakın, aynı zamanda Ca3Co4O9'in değerlerinden daha yüksektir. Ca2.8Pr0.2Co4O9 için en yüksek Seebeck katsayısı değeri 400 °C'de 179 µV/K olarak bulunmuştur ve bu değer literatür değerinden bir miktar daha yüksektir. Bu sonuçlar, Pr'un, Seebeck katsayısı değerinin artırılmasında etkili bir katkı olduğunu göstermektedir.
J. Garcia-Canadas and G. Min, "Multifunctional probes for high-throughput measurement of Seebeck coefficient and electrical conductivity at room temperature," Rev Sci Instrum, vol. 85, p. 043906, Apr 2014.
M. S. Dresselhaus, G. Chen, Z. F. Ren, G. Dresselhaus, A. Henry, and J.-P. Fleurial, "New Composite Thermoelectric Materials for Energy Harvesting Applications," JOM, vol. 61, pp. 86-90, 2009.
S. Bhattacharya, S. Rayaprol, A. Singh, A. Dogra, C. Thinaharan, D. K. Aswal, et al., "Low temperature thermopower and electrical transport in misfit Ca3Co4O9 with elongated c-axis," Journal of Physics D: Applied Physics, vol. 41, p. 085414, 2008.
R. Funahashi, M. Mikami, T. Mihara, S. Urata, and N. Ando, "A portable thermoelectric-power-generating module composed of oxide devices," Journal of Applied Physics, vol. 99, p. 066117, 2006.
Y. Song, Q. Sun, L. Zhao, F. Wang, and Z. Jiang, "Synthesis and thermoelectric power factor of (Ca0.95Bi0.05)3Co4O9/Ag composites," Materials Chemistry and Physics, vol. 113, pp. 645-649, 2009.
L. Han, N. V. Nong, L. T. Hung, T. Holgate, N. Pryds, M. Ohtaki, et al., "The influence of α- and γ-Al2O3 phases on the thermoelectric properties of Al-doped ZnO," Journal of Alloys and Compounds, vol. 555, pp. 291-296, 2013.
H. Alam and S. Ramakrishna, "A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials," Nano Energy, vol. 2, pp. 190-212, 2013.
Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, "Comparison of the high temperature thermoelectric properties for Ag-doped and Ag-added Ca3Co4O9," Journal of Alloys and Compounds, vol. 477, pp. 817-821, 2009.
N. Van Nong, N. Pryds, S. Linderoth, and M. Ohtaki, "Enhancement of the thermoelectric performance of p-type layered oxide Ca(3)Co(4)O((9)+delta) through heavy doping and metallic nanoinclusions," Adv Mater, vol. 23, pp. 2484-90, Jun 3 2011.
C. Chen, T. Zhang, R. Donelson, D. Chu, R. Tian, T. T. Tan, et al., "Thermopower and chemical stability of Na0.77CoO2/Ca3Co4O9 composites," Acta Materialia, vol. 63, pp. 99-106, 2014.
H. Su, Y. Jiang, X. Lan, X. Liu, H. Zhong, and D. Yu, "Ca3 − xBixCo4O9 and Ca1 − ySmyMnO3 thermoelectric materials and their power-generation devices," physica status solidi (a), vol. 208, pp. 147-155, 2011.
K. Park, H. K. Hwang, J. W. Seo, and W. S. Seo, "Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation," Energy, vol. 54, pp. 139-145, 2013.
S. W. Nan, J.; Deng, Y.; Nan, C.W., "Synthesis and thermoelectric properties of (NaxCa(1-x))3Co4O9 ceramics," Journal of the European Ceramic Society vol. 23, pp. 859-863, 2003.
A. Goktas, I. H. Mutlu, Y. Yamada, and E. Celik, "Influence of pH on the structural optical and magnetic properties of Zn1−xMnxO thin films grown by sol–gel method," Journal of Alloys and Compounds, vol. 553, pp. 259-266, 2013.
M. H. Bocanegra-Bernal, "Hot Isostatic Pressing (HIP) technology and its applications to metals and ceramics," Journal of Materials Science, vol. 39, pp. 6399-6420, 2004.
K. A. Borup, J. de Boor, H. Wang, F. Drymiotis, F. Gascoin, X. Shi, et al., "Measuring thermoelectric transport properties of materials," Energy Environ. Sci., vol. 8, pp. 423-435, 2015.
E. Celik, U. Aybarc, M. F. Ebeoglugil, I. Birlik, and O. Culha, "ITO films on glass substrate by sol–gel technique: synthesis, characterization and optical properties," Journal of Sol-Gel Science and Technology, vol. 50, pp. 337-347, 2009.
H. Q. Liu, X. B. Zhao, T. J. Zhu, Y. Song, and F. P. Wang, "Thermoelectric properties of Gd, Y co-doped Ca3Co4O9+δ," Current Applied Physics, vol. 9, pp. 409-413, 2009.
M. Rezaei, M. Khajenoori, and B. Nematollahi, "Preparation of nanocrystalline MgO by surfactant assisted precipitation method," Materials Research Bulletin, vol. 46, pp. 1632-1637, 2011.
F. P. Zhang, X. Zhang, Q. M. Lu, J. X. Zhang, Y. Q. Liu, and G. Z. Zhang, "Effects of Pr doping on thermoelectric transport properties of Ca3−xPrxCo4O9," Solid State Sciences, vol. 13, pp. 1443-1447, 2011.
Seebeck Coefficient of Ca2.8Pr0.2Co4O9 Synthesized by Sol-Gel Method with Thermal and Structural Characterization
In this paper, Ca2.8Pr0.2Co4O9 powders were synthesized by sol-gel method and thermal and structural characterization of the powders were systematically examined for high temperature thermoelectric generator applications. Differential Thermal Analysis-Thermogravimetry (DTA-TG) was used to specify appropriate thermal regime of the powders for calcination process. Chemical structure and reaction type of intermediate temperature products were defined by Fourier Transform Infrared (FTIR) Spectroscopy. Structural properties of the powders were implemented by X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) was used to specify chemical composition and empirical formula of the elements existed within the powders. It can be seen from the phase spectrum that 2θ peaks of Ca2.8Pr0.2Co4O9 correspond to the literature and coincide with typical Ca3Co4O9 peaks. Seebeck coefficients of the samples are much higher than Ca3Co4O9 while they are closer to literature value of Ca2.8Pr0.2Co4O9. The highest Seebeck coefficient of Ca2.8Pr0.2Co4O9 is found to be 179 µV/K at 400 °C which is a little higher than the literature value. These results show that Pr is an effective dopant to increase the Seebeck coefficient values.
J. Garcia-Canadas and G. Min, "Multifunctional probes for high-throughput measurement of Seebeck coefficient and electrical conductivity at room temperature," Rev Sci Instrum, vol. 85, p. 043906, Apr 2014.
M. S. Dresselhaus, G. Chen, Z. F. Ren, G. Dresselhaus, A. Henry, and J.-P. Fleurial, "New Composite Thermoelectric Materials for Energy Harvesting Applications," JOM, vol. 61, pp. 86-90, 2009.
S. Bhattacharya, S. Rayaprol, A. Singh, A. Dogra, C. Thinaharan, D. K. Aswal, et al., "Low temperature thermopower and electrical transport in misfit Ca3Co4O9 with elongated c-axis," Journal of Physics D: Applied Physics, vol. 41, p. 085414, 2008.
R. Funahashi, M. Mikami, T. Mihara, S. Urata, and N. Ando, "A portable thermoelectric-power-generating module composed of oxide devices," Journal of Applied Physics, vol. 99, p. 066117, 2006.
Y. Song, Q. Sun, L. Zhao, F. Wang, and Z. Jiang, "Synthesis and thermoelectric power factor of (Ca0.95Bi0.05)3Co4O9/Ag composites," Materials Chemistry and Physics, vol. 113, pp. 645-649, 2009.
L. Han, N. V. Nong, L. T. Hung, T. Holgate, N. Pryds, M. Ohtaki, et al., "The influence of α- and γ-Al2O3 phases on the thermoelectric properties of Al-doped ZnO," Journal of Alloys and Compounds, vol. 555, pp. 291-296, 2013.
H. Alam and S. Ramakrishna, "A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials," Nano Energy, vol. 2, pp. 190-212, 2013.
Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, "Comparison of the high temperature thermoelectric properties for Ag-doped and Ag-added Ca3Co4O9," Journal of Alloys and Compounds, vol. 477, pp. 817-821, 2009.
N. Van Nong, N. Pryds, S. Linderoth, and M. Ohtaki, "Enhancement of the thermoelectric performance of p-type layered oxide Ca(3)Co(4)O((9)+delta) through heavy doping and metallic nanoinclusions," Adv Mater, vol. 23, pp. 2484-90, Jun 3 2011.
C. Chen, T. Zhang, R. Donelson, D. Chu, R. Tian, T. T. Tan, et al., "Thermopower and chemical stability of Na0.77CoO2/Ca3Co4O9 composites," Acta Materialia, vol. 63, pp. 99-106, 2014.
H. Su, Y. Jiang, X. Lan, X. Liu, H. Zhong, and D. Yu, "Ca3 − xBixCo4O9 and Ca1 − ySmyMnO3 thermoelectric materials and their power-generation devices," physica status solidi (a), vol. 208, pp. 147-155, 2011.
K. Park, H. K. Hwang, J. W. Seo, and W. S. Seo, "Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation," Energy, vol. 54, pp. 139-145, 2013.
S. W. Nan, J.; Deng, Y.; Nan, C.W., "Synthesis and thermoelectric properties of (NaxCa(1-x))3Co4O9 ceramics," Journal of the European Ceramic Society vol. 23, pp. 859-863, 2003.
A. Goktas, I. H. Mutlu, Y. Yamada, and E. Celik, "Influence of pH on the structural optical and magnetic properties of Zn1−xMnxO thin films grown by sol–gel method," Journal of Alloys and Compounds, vol. 553, pp. 259-266, 2013.
M. H. Bocanegra-Bernal, "Hot Isostatic Pressing (HIP) technology and its applications to metals and ceramics," Journal of Materials Science, vol. 39, pp. 6399-6420, 2004.
K. A. Borup, J. de Boor, H. Wang, F. Drymiotis, F. Gascoin, X. Shi, et al., "Measuring thermoelectric transport properties of materials," Energy Environ. Sci., vol. 8, pp. 423-435, 2015.
E. Celik, U. Aybarc, M. F. Ebeoglugil, I. Birlik, and O. Culha, "ITO films on glass substrate by sol–gel technique: synthesis, characterization and optical properties," Journal of Sol-Gel Science and Technology, vol. 50, pp. 337-347, 2009.
H. Q. Liu, X. B. Zhao, T. J. Zhu, Y. Song, and F. P. Wang, "Thermoelectric properties of Gd, Y co-doped Ca3Co4O9+δ," Current Applied Physics, vol. 9, pp. 409-413, 2009.
M. Rezaei, M. Khajenoori, and B. Nematollahi, "Preparation of nanocrystalline MgO by surfactant assisted precipitation method," Materials Research Bulletin, vol. 46, pp. 1632-1637, 2011.
F. P. Zhang, X. Zhang, Q. M. Lu, J. X. Zhang, Y. Q. Liu, and G. Z. Zhang, "Effects of Pr doping on thermoelectric transport properties of Ca3−xPrxCo4O9," Solid State Sciences, vol. 13, pp. 1443-1447, 2011.
Kılınç, E., Sarı, M. A., Uysal, F., Çelik, E., et al. (2017). Seebeck Coefficient of Ca2.8Pr0.2Co4O9 Synthesized by Sol-Gel Method with Thermal and Structural Characterization. Sakarya University Journal of Science, 21(5), 879-885. https://doi.org/10.16984/saufenbilder.295487
AMA
Kılınç E, Sarı MA, Uysal F, Çelik E, Kurt H. Seebeck Coefficient of Ca2.8Pr0.2Co4O9 Synthesized by Sol-Gel Method with Thermal and Structural Characterization. SAUJS. October 2017;21(5):879-885. doi:10.16984/saufenbilder.295487
Chicago
Kılınç, Enes, Mücahit Abdullah Sarı, Fatih Uysal, Erdal Çelik, and Hüseyin Kurt. “Seebeck Coefficient of Ca2.8Pr0.2Co4O9 Synthesized by Sol-Gel Method With Thermal and Structural Characterization”. Sakarya University Journal of Science 21, no. 5 (October 2017): 879-85. https://doi.org/10.16984/saufenbilder.295487.
EndNote
Kılınç E, Sarı MA, Uysal F, Çelik E, Kurt H (October 1, 2017) Seebeck Coefficient of Ca2.8Pr0.2Co4O9 Synthesized by Sol-Gel Method with Thermal and Structural Characterization. Sakarya University Journal of Science 21 5 879–885.
IEEE
E. Kılınç, M. A. Sarı, F. Uysal, E. Çelik, and H. Kurt, “Seebeck Coefficient of Ca2.8Pr0.2Co4O9 Synthesized by Sol-Gel Method with Thermal and Structural Characterization”, SAUJS, vol. 21, no. 5, pp. 879–885, 2017, doi: 10.16984/saufenbilder.295487.
ISNAD
Kılınç, Enes et al. “Seebeck Coefficient of Ca2.8Pr0.2Co4O9 Synthesized by Sol-Gel Method With Thermal and Structural Characterization”. Sakarya University Journal of Science 21/5 (October 2017), 879-885. https://doi.org/10.16984/saufenbilder.295487.
JAMA
Kılınç E, Sarı MA, Uysal F, Çelik E, Kurt H. Seebeck Coefficient of Ca2.8Pr0.2Co4O9 Synthesized by Sol-Gel Method with Thermal and Structural Characterization. SAUJS. 2017;21:879–885.
MLA
Kılınç, Enes et al. “Seebeck Coefficient of Ca2.8Pr0.2Co4O9 Synthesized by Sol-Gel Method With Thermal and Structural Characterization”. Sakarya University Journal of Science, vol. 21, no. 5, 2017, pp. 879-85, doi:10.16984/saufenbilder.295487.
Vancouver
Kılınç E, Sarı MA, Uysal F, Çelik E, Kurt H. Seebeck Coefficient of Ca2.8Pr0.2Co4O9 Synthesized by Sol-Gel Method with Thermal and Structural Characterization. SAUJS. 2017;21(5):879-85.