Research Article
BibTex RIS Cite

Şiddetli sıcak hava dalgaları: dinamik-fiziksel etkenler ve bu sıcak hava dalgalarının özellikleri

Year 2017, , 190 - 202, 01.04.2017
https://doi.org/10.16984/saufenbilder.297005

Abstract

 Sıcak hava dalgası (SHD) oluşumunu
tetikleyen, idamesini yapan dinamik ve fiziksel etmenler incelenmiştir. Yüksek
basınç sistemlerinin SHD işlemlerindeki rolünden dolayı, atmosferik
bloklamanın belirlenmesi için bir metot tanımlanmıştır. SHD teşhisinde, yere
ve zamana göre değişen referans sıcaklığını bularak, SHD parametrelerini
hesaplayan bir metot kullanılmıştır. 2003, 2012 ve 2015 Haziran-Temmuz-Ağustos
dönemlerine ait 500hPa jeopotansiyel yüksekliği, 850hPa sıcaklığı, toprak nemi
ve deniz yüzeyi sıcaklıklarının iklim ortalamalarından olan sapmaları analiz
edilmiştir. Bu dönemlerindeki dinamik ve fiziksel etmenler, atmosferik
bloklama ve SHD bulgularıyla birlikte irdelenmiştir. Sonuçlar, SHD en çok Ege
Bölgesi’nde etkili olduğunu göstermektedir. Yaz aylarında yıldan yıla görülen değişkenlikler
iklim değişkenliğinin göstergesi olarak değerlendirilmekdedir.

References

  • [1] R. Basu, “High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008, Environmental Health”, vol. 8, no. 4, DOI: 10.1186/1476-069X-8-40, 2009.
  • [2] A. Fink, T. Brücher, A. Krüger, G. Leckebusch, J. Pinto, and U. Ulbrich, “The 2003 European summer heatwaves and drought – synoptic diagnosis and impacts”, Weather, vol. 59, pp. 209–216, 2004.
  • [3] R. Vautard, C. Honore´, M. Beekmann, and L. Rouil, “Simulation of ozone during the August 2003 heat wave and emission control scenarios”, Atmos. Environ., vol. 39, pp. 2957-2967, 2005.
  • [4] P. Ciais et al., “Europe‐wide reduction in primary productivity caused by the heat and drought in 2003”, Nature, vol. 437, pp. 529–533, doi:10.1038/nature03972, 2005.
  • [5] D. Coumou and S. Rahmstorf, “A decade of weather extremes”, Nat. Clim. Change, vol. 2, no. 7, 491–496, 2012.
  • [6] Y. S. Unal, E. Tan, and S. S. Mentes, “Summer heat waves over western Turkey between 1965 and 2006”, Theor. Appl. Climatol., vol. 112, pp. 339–350, doi:10.1007/s00704-012-0704-0, 2013.
  • [7] C. Schär, P. L. Vidale, D. Luthi, C. Frei, C. Haberli, M. A. Liniger, and C. Appenzeller, “The role of increasing temperature variability in European summer heatwaves”, Nature, vol. 427, pp. 332–336, 2004.
  • [8] P. A. Stott, D. A. Stone, and M. R., “M.R., Human contribution to the European heatwave of 2003”, Nature, vol. 432, pp. 610–614, doi:10.1038/nature03089, 2004.
  • [9] E. Black, M. Blackburn, G. Harrison, B. J. Hoskins, and J. Methven, “Factors contributing to the summer 2003 European heatwave”, Weather, vol. 59, pp. 217–223, 2004.
  • [10] R. Dole, M. Hoerling, J. Perlwitz, J. Eischeid, P. Pegion, T. Zhang, X-Y. Quan, T. Xu, and D. Murray, “Was there a basis for anticipating the 2010 Russian heat wave?”, Geophys. Res. Lett., vol. 38, doi:10.1029/2010GL046582, 2011.
  • [11] M. Rebetez, O. Dupont, and M. Giroud, “An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003”, Theor. Appl. Climatol.,vol. 95, pp. 1-7, 2009.
  • [12] D. Founda and C. Giannakopoulos, “The exceptionally hot summer of 2007 in Athens, Greece. A typical summer in the future climate?”, Glob. Planet Change, vol. 67, no. 3, pp. 227-236, 2009.
  • [13] G. A. Meehl and C. Tebaldi, “More intense, more frequent, and longer lasting heat waves in the 21st century”, Science, vol. 305, pp. 994–997, doi:10.1126/science.1098704, 2004.
  • [14] N. S. Diffenbaugh, J. S. Pal, F. Giorgi, and G. Xuejie, “Heat stress intensification in the Mediterranean climate change hotspots”, Geophys. Res. Lett., vol. 34, no. L11706, doi:10.1029/2007GL030000, 2007.
  • [15] J. Sillmann, V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, “Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections”, J. Geophys. Res.,118(6), 2473–2493, 2013.
  • [16] IPCC., Summary for policymakers. In Climate Change: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds). Cambridge University Press: Cambridge, UK and New York, NY, pp. 1–32, 2014.
  • [17] F. Giorgi , “Climate change hot-spots”, Geophys. Res. Lett., vol. 33, no. L08707, doi:10.1029/2006GL025734, 2006.
  • [18] S. Pfahl and H. Wernli, “Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales”, Geophys. Res. Lett., vol. 39, no. L12807, doi:10.1029/2012GL052261, 2012.
  • [19] D. G. Miralles, A. J. Teuling, C. C. van Heerwaarden, and V. G. de Arellano, “Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation”, Nat. Geosci., vol. 7, pp. 345–349, 2014
  • [20] D. F. Rex, “Blocking action in the middle troposphere and its effect upon regional climate, I. An aerological study of blocking action”, Tellus, vol. 2, pp. 196-211, 1950.
  • [21] T. Tibaldi and F. Molteni, “On the operational predictability of blocking”, Tellus, vol. 42A, pp. 34-365, 1990.
  • [22] J. Pelly and B. J. Hoskins, “A new perspective on Blocking”, J. Atmos. Sci., vol. 60, pp. 74 -755, 2003.
  • [23] M. Demirtaş, “Bidimensional diagnostics of atmospheric blocking and impact of blocking on regional weather, the 7th Atmospheric Sciences Symposium”, Istanbul-Turkey, 28-30 April 2015, pp. 50-59, (ISBN: 978-975-561-461-8).
  • [24] E. M. Fische, S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, “Soil moisture–atmosphere interactions during the 2003 European summer heat wave”, J. Clim. Vol. 20, pp. 5081–5099, 2007.
  • [25] E. M. Fischer, “Autopsy of two mega-heatwaves”, Nature Geoscience, vol. 7, pp. 332–333, doi:10.1038/ngeo2148, 2014.
  • [26] R. Vautard, P. Yiou, F. D’Andrea, N. de Noblet, N. Viovy, C. Cassou, J. Polcher, P. Ciais, M. Kageyama,and Y. Fan, “Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit”, Geophys. Res. Lett., vol. 34, doi:10.1029/2006GL028001, 2007.
  • [27] R. Lorenz, E. B. Jaeger, and S. I. Seneviratne, “Persistence of heat waves and its link to soil moisture memory”, Geophys. Res. Lett., vol. 37, no. L09703, doi:10.1029/2010GL042764, 2010.
  • [28] L. Ferranti and P. Viterbo, “The European summer of 2003: Sensitivity to soil water initial conditions”, J. Clim., vol. 19, pp. 3659-3680, 2006.
  • [29] L. Feudale and J. Shukla, “Role of Mediterranean SST in enhancing the European heat wave of summer 2003”, Geophys Res Lett., vol. 34, no. L03811, 2007.
  • [30] F. Grazzini and P. Viterbo, “Record-breaking warm sea surface temperature of the Mediterranean Sea”, ECMWF Newsletter 98, ECMWF, Reading, United Kingdom, pp. 30-31, 2003. [ http://www.ecmwf.int/publications/.]
  • [31] M. Türkeş, U. M. Sümer and I. Demir, “Re-evaluation of trends and changes in mean, maximum and minimum temperatures of Turkey for the period 1929–1999”, Int. J. Climatol., vol. 22, pp. 947–977, doi:10.1002/joc.777, 2002.
  • [32] M. Türkeş and U. M. Sümer, “Spatial and temporal patterns of trends and variability in diurnal temperature ranges of Turkey”, Theor. Appl. Climatol., vol. 77, pp. 195-227, 2004.
  • [33] E. Erlat and M. Türkeş, “Observed changes and trends in numbers of summer and tropical days, and the 2010 hot summer in Turkey”, International Journal of Climatology, vol. 33, no. 8, pp. 18981908, DOI: 10.1002/joc.3556, 2013.
  • [34] F. G. Kuglitsch, A. Toreti, E. Xoplaki, P. M. Della‐Marta, C. S. Zerefos, M. Türkeş, and J. Luterbacher, “Heat wave changes in the eastern Mediterranean since 1960”, Geophys. Res. Lett., vol. 37, doi:10.1029/2009GL041841, 2010.
  • [35] M. Stefanon, F. D’Andrea, and P. Drobinski, “Heatwave classification over Europe and the Mediterranean region”, Environ. Res. Lett., vol. 7, doi:10.1088/1748-9326/7/1/014023, 2012.
  • [36] D. P. Dee et al., “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system”, Q. J. R. Meteorol. Soc., vol. 137, pp. 553–597, doi:10.1002/qj.828, 2011.
  • [37] H. Lejenäs and H. Økland, “Characteristics of Northern Hemisphere blocking as determined from a long time series of observational data”, Tellus , vol. 35A, pp. 350-362, 1983.
  • [38] B. J. Hoskins, M. E. McIntyre, and A. W. Robertson, “On the use and significance of isentropic potential vorticity maps”, Q. J. R. Meteorol. Soc., vol. 111, pp. 877-946, 1985.
  • [39] M. Demirtas and A. J. Thorpe, “Sensitivity of short-range weather forecasts to local potential vorticity modifications”, Mon. Wea. Rev., vol. 127, no.5, pp. 922-939, 1999.
  • [40] S. Scherrer, M. Croci-Maspoli, C. Schwierz, and C. Appenzeller, “Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int. J. Climatol., vol. 26, pp. 233–249, 2006.
  • [41] M. Demirtaş, “Diagnostics and frequency of NH atmospheric blocking”, Climate Change and Climate Dynamics International Conference, İstanbul-Turkey), 8-10 October 2014, pp. 54-58, (ISBN: 978-975-561-445).
  • [42] P. J. Robinson, “On the definition of a heat wave”, J Appl Meteorol, vol. 40, pp. 762-775, 2001.
  • [43] P. Frich, L. V. Alexander, P.m Della-Marta, B. Gleason, M. Hayloc, A. M. G. Klein Tank, and T. Peterson, “Observed coherent changes in climatic extremes during the second half of the twentieth century”, Clim. Res. Vol. 19, no. 3, 193-212, 2002.
  • [44] O. Shevchenko, H. Lee, S. Snizhkoa, and H. Mayerb, “Long-term analysis of heat waves in Ukraine”, Int. J. Climatol., vol. 34, pp. 1642-1650, DOI: 10.1002/joc.3792, 2014.
  • [45] M. Beniston, “The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations”, Geophys. Res. Lett., vol. 31, no. L02202, doi:10.1029/2003GL018857, 2004.
  • [46] J. Spinoni, M. Lakatos, T. Szentimrey, Z. Bihari, S. Szalai, J. Vogta, and T. Antofiea, “Heat and cold waves trends in the Carpathian Region from 1961 to 2010”, Int. J. Climatol., vol. 35, pp. 4197–4209, DOI: 10.1002/joc.4279, 2015.
  • [47] S. Russo, A. Dosio, R. G. Graversen, J. Sillmann, H. Carrao, M. B. Dunbar, A. Singleton, P Montagna, P. Barbola, and V. J. Vogt, “Magnitude of extreme heat waves in present climate and their projection in a warming world”, J. Geophys. Res. Atmos., vol. 119, no. 12, pp.500–512, doi:10.1002/2014JD022098, 2014.
  • [48] R. García-Herrera, J. Díaz, R. M. Trigo, J. Luterbacher, and E. M. Fischer, “A Review of the European Summer Heat Wave of 2003”, Critical Reviews in Environmental, Science and Technology, vol. 40, no. 4, pp. 267-306, DOI: 10.1080/10643380802238137, 2010.
  • [49] J. Blunden and D. S. Arndt, “State of the Climate in 2012”, Bull. Amer. Meteor. Soc., vol. 94, no. 8, S1–S238, 2003.
  • [50] World Meteorological Organization, Statement on the Status of the Global Climate in 2015, WMO-No. 1167, 28pp, 2015.

Intense heat waves: dynamical-physical factors and characteristics of these heat waves

Year 2017, , 190 - 202, 01.04.2017
https://doi.org/10.16984/saufenbilder.297005

Abstract

Dynamical and physical factors that trigger and maintain heat waves (HW)
were examined. Since high pressure systems play a role in HW processes, an
atmospheric blocking method was introduced. A HW detection method which employs
spatially and temporally changing reference temperature to compute HW
parameters was used. Departures from climate averages of 500-hPa geopotential
height, 850-hPa temperature, sea-surface-temperatures and soil wetness of 2003,
2012 and 2015 June-July-August were analyzed. HWs were examined together with
dynamical and physical factors, atmospheric blocking and HW characteristics.
Results indicate that HWs were influential over the Aegean region. Year-to-year
variability in summer temperatures is considered as signs of climate
variability. 

References

  • [1] R. Basu, “High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008, Environmental Health”, vol. 8, no. 4, DOI: 10.1186/1476-069X-8-40, 2009.
  • [2] A. Fink, T. Brücher, A. Krüger, G. Leckebusch, J. Pinto, and U. Ulbrich, “The 2003 European summer heatwaves and drought – synoptic diagnosis and impacts”, Weather, vol. 59, pp. 209–216, 2004.
  • [3] R. Vautard, C. Honore´, M. Beekmann, and L. Rouil, “Simulation of ozone during the August 2003 heat wave and emission control scenarios”, Atmos. Environ., vol. 39, pp. 2957-2967, 2005.
  • [4] P. Ciais et al., “Europe‐wide reduction in primary productivity caused by the heat and drought in 2003”, Nature, vol. 437, pp. 529–533, doi:10.1038/nature03972, 2005.
  • [5] D. Coumou and S. Rahmstorf, “A decade of weather extremes”, Nat. Clim. Change, vol. 2, no. 7, 491–496, 2012.
  • [6] Y. S. Unal, E. Tan, and S. S. Mentes, “Summer heat waves over western Turkey between 1965 and 2006”, Theor. Appl. Climatol., vol. 112, pp. 339–350, doi:10.1007/s00704-012-0704-0, 2013.
  • [7] C. Schär, P. L. Vidale, D. Luthi, C. Frei, C. Haberli, M. A. Liniger, and C. Appenzeller, “The role of increasing temperature variability in European summer heatwaves”, Nature, vol. 427, pp. 332–336, 2004.
  • [8] P. A. Stott, D. A. Stone, and M. R., “M.R., Human contribution to the European heatwave of 2003”, Nature, vol. 432, pp. 610–614, doi:10.1038/nature03089, 2004.
  • [9] E. Black, M. Blackburn, G. Harrison, B. J. Hoskins, and J. Methven, “Factors contributing to the summer 2003 European heatwave”, Weather, vol. 59, pp. 217–223, 2004.
  • [10] R. Dole, M. Hoerling, J. Perlwitz, J. Eischeid, P. Pegion, T. Zhang, X-Y. Quan, T. Xu, and D. Murray, “Was there a basis for anticipating the 2010 Russian heat wave?”, Geophys. Res. Lett., vol. 38, doi:10.1029/2010GL046582, 2011.
  • [11] M. Rebetez, O. Dupont, and M. Giroud, “An analysis of the July 2006 heatwave extent in Europe compared to the record year of 2003”, Theor. Appl. Climatol.,vol. 95, pp. 1-7, 2009.
  • [12] D. Founda and C. Giannakopoulos, “The exceptionally hot summer of 2007 in Athens, Greece. A typical summer in the future climate?”, Glob. Planet Change, vol. 67, no. 3, pp. 227-236, 2009.
  • [13] G. A. Meehl and C. Tebaldi, “More intense, more frequent, and longer lasting heat waves in the 21st century”, Science, vol. 305, pp. 994–997, doi:10.1126/science.1098704, 2004.
  • [14] N. S. Diffenbaugh, J. S. Pal, F. Giorgi, and G. Xuejie, “Heat stress intensification in the Mediterranean climate change hotspots”, Geophys. Res. Lett., vol. 34, no. L11706, doi:10.1029/2007GL030000, 2007.
  • [15] J. Sillmann, V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, “Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections”, J. Geophys. Res.,118(6), 2473–2493, 2013.
  • [16] IPCC., Summary for policymakers. In Climate Change: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds). Cambridge University Press: Cambridge, UK and New York, NY, pp. 1–32, 2014.
  • [17] F. Giorgi , “Climate change hot-spots”, Geophys. Res. Lett., vol. 33, no. L08707, doi:10.1029/2006GL025734, 2006.
  • [18] S. Pfahl and H. Wernli, “Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales”, Geophys. Res. Lett., vol. 39, no. L12807, doi:10.1029/2012GL052261, 2012.
  • [19] D. G. Miralles, A. J. Teuling, C. C. van Heerwaarden, and V. G. de Arellano, “Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation”, Nat. Geosci., vol. 7, pp. 345–349, 2014
  • [20] D. F. Rex, “Blocking action in the middle troposphere and its effect upon regional climate, I. An aerological study of blocking action”, Tellus, vol. 2, pp. 196-211, 1950.
  • [21] T. Tibaldi and F. Molteni, “On the operational predictability of blocking”, Tellus, vol. 42A, pp. 34-365, 1990.
  • [22] J. Pelly and B. J. Hoskins, “A new perspective on Blocking”, J. Atmos. Sci., vol. 60, pp. 74 -755, 2003.
  • [23] M. Demirtaş, “Bidimensional diagnostics of atmospheric blocking and impact of blocking on regional weather, the 7th Atmospheric Sciences Symposium”, Istanbul-Turkey, 28-30 April 2015, pp. 50-59, (ISBN: 978-975-561-461-8).
  • [24] E. M. Fische, S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, “Soil moisture–atmosphere interactions during the 2003 European summer heat wave”, J. Clim. Vol. 20, pp. 5081–5099, 2007.
  • [25] E. M. Fischer, “Autopsy of two mega-heatwaves”, Nature Geoscience, vol. 7, pp. 332–333, doi:10.1038/ngeo2148, 2014.
  • [26] R. Vautard, P. Yiou, F. D’Andrea, N. de Noblet, N. Viovy, C. Cassou, J. Polcher, P. Ciais, M. Kageyama,and Y. Fan, “Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit”, Geophys. Res. Lett., vol. 34, doi:10.1029/2006GL028001, 2007.
  • [27] R. Lorenz, E. B. Jaeger, and S. I. Seneviratne, “Persistence of heat waves and its link to soil moisture memory”, Geophys. Res. Lett., vol. 37, no. L09703, doi:10.1029/2010GL042764, 2010.
  • [28] L. Ferranti and P. Viterbo, “The European summer of 2003: Sensitivity to soil water initial conditions”, J. Clim., vol. 19, pp. 3659-3680, 2006.
  • [29] L. Feudale and J. Shukla, “Role of Mediterranean SST in enhancing the European heat wave of summer 2003”, Geophys Res Lett., vol. 34, no. L03811, 2007.
  • [30] F. Grazzini and P. Viterbo, “Record-breaking warm sea surface temperature of the Mediterranean Sea”, ECMWF Newsletter 98, ECMWF, Reading, United Kingdom, pp. 30-31, 2003. [ http://www.ecmwf.int/publications/.]
  • [31] M. Türkeş, U. M. Sümer and I. Demir, “Re-evaluation of trends and changes in mean, maximum and minimum temperatures of Turkey for the period 1929–1999”, Int. J. Climatol., vol. 22, pp. 947–977, doi:10.1002/joc.777, 2002.
  • [32] M. Türkeş and U. M. Sümer, “Spatial and temporal patterns of trends and variability in diurnal temperature ranges of Turkey”, Theor. Appl. Climatol., vol. 77, pp. 195-227, 2004.
  • [33] E. Erlat and M. Türkeş, “Observed changes and trends in numbers of summer and tropical days, and the 2010 hot summer in Turkey”, International Journal of Climatology, vol. 33, no. 8, pp. 18981908, DOI: 10.1002/joc.3556, 2013.
  • [34] F. G. Kuglitsch, A. Toreti, E. Xoplaki, P. M. Della‐Marta, C. S. Zerefos, M. Türkeş, and J. Luterbacher, “Heat wave changes in the eastern Mediterranean since 1960”, Geophys. Res. Lett., vol. 37, doi:10.1029/2009GL041841, 2010.
  • [35] M. Stefanon, F. D’Andrea, and P. Drobinski, “Heatwave classification over Europe and the Mediterranean region”, Environ. Res. Lett., vol. 7, doi:10.1088/1748-9326/7/1/014023, 2012.
  • [36] D. P. Dee et al., “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system”, Q. J. R. Meteorol. Soc., vol. 137, pp. 553–597, doi:10.1002/qj.828, 2011.
  • [37] H. Lejenäs and H. Økland, “Characteristics of Northern Hemisphere blocking as determined from a long time series of observational data”, Tellus , vol. 35A, pp. 350-362, 1983.
  • [38] B. J. Hoskins, M. E. McIntyre, and A. W. Robertson, “On the use and significance of isentropic potential vorticity maps”, Q. J. R. Meteorol. Soc., vol. 111, pp. 877-946, 1985.
  • [39] M. Demirtas and A. J. Thorpe, “Sensitivity of short-range weather forecasts to local potential vorticity modifications”, Mon. Wea. Rev., vol. 127, no.5, pp. 922-939, 1999.
  • [40] S. Scherrer, M. Croci-Maspoli, C. Schwierz, and C. Appenzeller, “Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int. J. Climatol., vol. 26, pp. 233–249, 2006.
  • [41] M. Demirtaş, “Diagnostics and frequency of NH atmospheric blocking”, Climate Change and Climate Dynamics International Conference, İstanbul-Turkey), 8-10 October 2014, pp. 54-58, (ISBN: 978-975-561-445).
  • [42] P. J. Robinson, “On the definition of a heat wave”, J Appl Meteorol, vol. 40, pp. 762-775, 2001.
  • [43] P. Frich, L. V. Alexander, P.m Della-Marta, B. Gleason, M. Hayloc, A. M. G. Klein Tank, and T. Peterson, “Observed coherent changes in climatic extremes during the second half of the twentieth century”, Clim. Res. Vol. 19, no. 3, 193-212, 2002.
  • [44] O. Shevchenko, H. Lee, S. Snizhkoa, and H. Mayerb, “Long-term analysis of heat waves in Ukraine”, Int. J. Climatol., vol. 34, pp. 1642-1650, DOI: 10.1002/joc.3792, 2014.
  • [45] M. Beniston, “The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations”, Geophys. Res. Lett., vol. 31, no. L02202, doi:10.1029/2003GL018857, 2004.
  • [46] J. Spinoni, M. Lakatos, T. Szentimrey, Z. Bihari, S. Szalai, J. Vogta, and T. Antofiea, “Heat and cold waves trends in the Carpathian Region from 1961 to 2010”, Int. J. Climatol., vol. 35, pp. 4197–4209, DOI: 10.1002/joc.4279, 2015.
  • [47] S. Russo, A. Dosio, R. G. Graversen, J. Sillmann, H. Carrao, M. B. Dunbar, A. Singleton, P Montagna, P. Barbola, and V. J. Vogt, “Magnitude of extreme heat waves in present climate and their projection in a warming world”, J. Geophys. Res. Atmos., vol. 119, no. 12, pp.500–512, doi:10.1002/2014JD022098, 2014.
  • [48] R. García-Herrera, J. Díaz, R. M. Trigo, J. Luterbacher, and E. M. Fischer, “A Review of the European Summer Heat Wave of 2003”, Critical Reviews in Environmental, Science and Technology, vol. 40, no. 4, pp. 267-306, DOI: 10.1080/10643380802238137, 2010.
  • [49] J. Blunden and D. S. Arndt, “State of the Climate in 2012”, Bull. Amer. Meteor. Soc., vol. 94, no. 8, S1–S238, 2003.
  • [50] World Meteorological Organization, Statement on the Status of the Global Climate in 2015, WMO-No. 1167, 28pp, 2015.
There are 50 citations in total.

Details

Subjects Civil Engineering
Journal Section Research Articles
Authors

Meral Demirtaş

Publication Date April 1, 2017
Submission Date August 18, 2016
Acceptance Date November 28, 2016
Published in Issue Year 2017

Cite

APA Demirtaş, M. (2017). Intense heat waves: dynamical-physical factors and characteristics of these heat waves. Sakarya University Journal of Science, 21(2), 190-202. https://doi.org/10.16984/saufenbilder.297005
AMA Demirtaş M. Intense heat waves: dynamical-physical factors and characteristics of these heat waves. SAUJS. April 2017;21(2):190-202. doi:10.16984/saufenbilder.297005
Chicago Demirtaş, Meral. “Intense Heat Waves: Dynamical-Physical Factors and Characteristics of These Heat Waves”. Sakarya University Journal of Science 21, no. 2 (April 2017): 190-202. https://doi.org/10.16984/saufenbilder.297005.
EndNote Demirtaş M (April 1, 2017) Intense heat waves: dynamical-physical factors and characteristics of these heat waves. Sakarya University Journal of Science 21 2 190–202.
IEEE M. Demirtaş, “Intense heat waves: dynamical-physical factors and characteristics of these heat waves”, SAUJS, vol. 21, no. 2, pp. 190–202, 2017, doi: 10.16984/saufenbilder.297005.
ISNAD Demirtaş, Meral. “Intense Heat Waves: Dynamical-Physical Factors and Characteristics of These Heat Waves”. Sakarya University Journal of Science 21/2 (April 2017), 190-202. https://doi.org/10.16984/saufenbilder.297005.
JAMA Demirtaş M. Intense heat waves: dynamical-physical factors and characteristics of these heat waves. SAUJS. 2017;21:190–202.
MLA Demirtaş, Meral. “Intense Heat Waves: Dynamical-Physical Factors and Characteristics of These Heat Waves”. Sakarya University Journal of Science, vol. 21, no. 2, 2017, pp. 190-02, doi:10.16984/saufenbilder.297005.
Vancouver Demirtaş M. Intense heat waves: dynamical-physical factors and characteristics of these heat waves. SAUJS. 2017;21(2):190-202.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.