Research Article
BibTex RIS Cite

Investigation of structural and dynamic properties in α -PbO2 phase of SnO2 under pressure

Year 2017, , 411 - 419, 01.06.2017
https://doi.org/10.16984/saufenbilder.298940

Abstract

SnO2 has various specific and unique properties, which make this material very useful for many
applications. The elastic constants of materials are very important because they are closely associated
with the mechanical, physical and chemical properties. The structural and elastic constants of SnO
2 were
investigated using density functional theory (DFT) as implemented in VASP software. The lattice
parameters, atomic positions and elastic constants were studied up to pressure of 18 GPa. The calculated
elastic constants indicate that SnO
2 is mechanically stable. Some fundamental physical quantities such as
bulk modulus, Debye temperature, Poisson’s ratio, Young's modulus, shear modulus, and crystal
anisotropy were derived calculated data. The phase transition from CaCl
2 – type to α-PbO2 structure is
obtained at 12.13 GPa. The Debye temperature of SnO
2 was computed from the elastic moduli and sound
velocities. The computed average linear compressibility of α-PbO
2 structure is 1.90 TPa-1 in the x, y and z
direction at ambient pressure. Also, the pressure-induced lattice (elastic) constants were fitted to the
regression equation in order to make direct comparison to results obtained by other calculations. The
results were compared with available theoretical and experimental data.
  

References

  • [ 1] Li, Y., Fan, W., Sun, H., Cheng, X., Li, P., Zhao, X., Hao, J., Jiang, M. “Optical properties of the high-pressure phases of SnO2: First-priciples calculation”, J.Phys. Chem. A, 114, 1052-1059, 2010.
  • [ 2] Ivashchenko, V.I., Rud, B.M., Gonchar, A.G., Ivashchenko, L.A., Butenko, O.O. “Effect of inhomogeneous deformation on the electronic structure of SnO2 and SnxSb1-xO2 phases”, Structural Materials Research, 51, 353-362, 2012.
  • [ 3] Parlinski, K., Kawazoe, Y. “Ab initio study of phonons in the rutile structure of SnO2 under pressure”, The European Physical Journal B, 13, 679-683, 2000.
  • [ 4] Liu, C., Chen, X., Ji, G. “First-principles investigations on structural, elastic and electronic properties of SnO2 under pressure”, Computational Materials Science, 50, 1571-1577, 2011.
  • [ 5] Erdem, İ., Kart, H.H., Cagin, T. “High pressure phase transitions in SnO2 polymorphs by first-principles calculations”, Journal of Alloys and Compounds, 587, 638-645, 2014.
  • [ 6] Kresse, G., joubert, D. “From ultra-soft pseudo potentials to the projector augment –wave method”, Physical Review B 59/3, 1758-1775, 1999.
  • [ 7] Kresse, G., Furtmüller, J. “Efficiency of ab-inito total energy calculations for metals and semiconductors using a plane-wave basis set”, Computational Materials Science 6, 15-20, 1996.
  • [ 8] Kresse, G., Furtmüller, J. “Efficient iterative schemes for ab-inito total energy calculations using a plane-wave basis set”, Physical Review B 54/16, 11169-11186, 1996.
  • [ 9] Blöch, P.E. “Projector augment–wave method”, Physical Review B 50/24, 17953-17979, 1994.
  • [10] Perdew, J.P., Burke, K., Emzerhof, M. “Generalized Gradient Approximation Made Simple”, Physical Review Letters 77/18, 3865-3868, 1996.
  • [11] Page, Y. L., Saxe, P. “Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations”, Phys. Rev. B, 63: 174103, 2001.
  • [12] Nielsen, O. H., Martin, R. C., “First-Principles Calculation of Stress” Phys. Rev. Lett., 50: 697–700, 1983.
  • [13] Gracia, L., Beltran, A., Andres, J. “Characterization of the high-pressure structures and phase transformations in SnO2. A density functional teory study”, J. Phys. Chem. B, 111, 6479-6485, 2007.
  • [14] Zhu, B., Liu, C., Lv, M., Chen, X., Zhu, J., Ji, G. “Structures, phase transition, elastic properties of SnO2 from first-principles analysis”, Phsica B, 406, 3508-3513, 2011.
  • [15] Bilge, M., Kart, S.Ö., Kart, H.H., Çağın, T. “B3-B1 phase transition and pressure dependence of elastic properties of ZnS”, Materials Chemistry and Physics, 111, 559-564, 2008.
  • [16] Connétable, D., Thomas, O. “First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi”, Physical Review B 79, 094101, 2009.
  • [17] Özışık, H., “GeI2, Re2C, La-Bi ve Ln2O3 (Ln=Sc, Y, La-Lu) bileşiklerinin yapısal, elektronik, mekanik ve titreşimsel özelliklerinin ab inito yöntemlerle incelenmesi”. Gazi Üniversitesi Fen Bilimleri Enstitüsü – Doktora Tezi 127 sayfa, 2011.
  • [18] Madelung, O. “Semiconductors: Data handbook. Springer”, 2004.
  • [19] Soykan, C., Kart, S.Ö. “Structural, mechanical and electronic properties of ZnTe polymorphs under pressure”, Journal of Alloys and Compounds, 529, 148-157, 2012.

Basınç altında α -PbO2 fazındaki SnO2’nın yapısal ve dinamik özelliklerinin araştırılması

Year 2017, , 411 - 419, 01.06.2017
https://doi.org/10.16984/saufenbilder.298940

Abstract

SnO2 birçok
uygulamalar için çok yararlı malzeme yapan çeşitli özel ve özgün özellikleri vardır.
Malzemenin elastik sabitleri mekanik, fiziksel ve kimyasal özellikleri ile
ilişki kurduğu için çok önemlidir. SnO
2’nın yapısal ve elastik
sabitleri VASP yazılımı kullanılarak Yoğunluk Fonksiyonel Teorisi (DFT) ile araştırılmıştır.
Örgü parametreleri, atomik konumlar ve elastik sabitler 18 GPa’ya kadar değişik
basınçlarda çalışıldı. Hesaplanan elastik sabitler göstermektedir ki SnO
2
mekanik olarak kararlıdır.
 Bulk modül,
Debye sıcaklığı, Poisson oranı,
 Young
modülü, shear modülü, kristal anizotropisi gibi bazı fiziksel nicelikler
hesaplanan verilerden türetilmiştir.
 CaCl2 tipinden α-PbO2 yapısına
faz geçişi
  12,13 GPa  elde edildi.  SnO2’nin Debye sıcaklığı elastik
modüller ve ses hızlarından hesaplandı. Ortam basıncında x, y ve z yönlerinde α-PbO
2’nin
ortalama sıkıştırıla bilirliği 1,90 TPa
-1 dır.



Ayrıca, basınç kaynaklı örgü
(elastik) sabitleri diğer hesaplamalar ile elde edilen sonuçlarla doğrudan
karşılaştırma yapmak amacıyla regresyon denklemine uyduruldu. Sonuçlar mevcut
teorik ve deneysel verilerle kıyaslanmıştır.

References

  • [ 1] Li, Y., Fan, W., Sun, H., Cheng, X., Li, P., Zhao, X., Hao, J., Jiang, M. “Optical properties of the high-pressure phases of SnO2: First-priciples calculation”, J.Phys. Chem. A, 114, 1052-1059, 2010.
  • [ 2] Ivashchenko, V.I., Rud, B.M., Gonchar, A.G., Ivashchenko, L.A., Butenko, O.O. “Effect of inhomogeneous deformation on the electronic structure of SnO2 and SnxSb1-xO2 phases”, Structural Materials Research, 51, 353-362, 2012.
  • [ 3] Parlinski, K., Kawazoe, Y. “Ab initio study of phonons in the rutile structure of SnO2 under pressure”, The European Physical Journal B, 13, 679-683, 2000.
  • [ 4] Liu, C., Chen, X., Ji, G. “First-principles investigations on structural, elastic and electronic properties of SnO2 under pressure”, Computational Materials Science, 50, 1571-1577, 2011.
  • [ 5] Erdem, İ., Kart, H.H., Cagin, T. “High pressure phase transitions in SnO2 polymorphs by first-principles calculations”, Journal of Alloys and Compounds, 587, 638-645, 2014.
  • [ 6] Kresse, G., joubert, D. “From ultra-soft pseudo potentials to the projector augment –wave method”, Physical Review B 59/3, 1758-1775, 1999.
  • [ 7] Kresse, G., Furtmüller, J. “Efficiency of ab-inito total energy calculations for metals and semiconductors using a plane-wave basis set”, Computational Materials Science 6, 15-20, 1996.
  • [ 8] Kresse, G., Furtmüller, J. “Efficient iterative schemes for ab-inito total energy calculations using a plane-wave basis set”, Physical Review B 54/16, 11169-11186, 1996.
  • [ 9] Blöch, P.E. “Projector augment–wave method”, Physical Review B 50/24, 17953-17979, 1994.
  • [10] Perdew, J.P., Burke, K., Emzerhof, M. “Generalized Gradient Approximation Made Simple”, Physical Review Letters 77/18, 3865-3868, 1996.
  • [11] Page, Y. L., Saxe, P. “Symmetry-general least-squares extraction of elastic coefficients from ab initio total energy calculations”, Phys. Rev. B, 63: 174103, 2001.
  • [12] Nielsen, O. H., Martin, R. C., “First-Principles Calculation of Stress” Phys. Rev. Lett., 50: 697–700, 1983.
  • [13] Gracia, L., Beltran, A., Andres, J. “Characterization of the high-pressure structures and phase transformations in SnO2. A density functional teory study”, J. Phys. Chem. B, 111, 6479-6485, 2007.
  • [14] Zhu, B., Liu, C., Lv, M., Chen, X., Zhu, J., Ji, G. “Structures, phase transition, elastic properties of SnO2 from first-principles analysis”, Phsica B, 406, 3508-3513, 2011.
  • [15] Bilge, M., Kart, S.Ö., Kart, H.H., Çağın, T. “B3-B1 phase transition and pressure dependence of elastic properties of ZnS”, Materials Chemistry and Physics, 111, 559-564, 2008.
  • [16] Connétable, D., Thomas, O. “First-principles study of the structural, electronic, vibrational, and elastic properties of orthorhombic NiSi”, Physical Review B 79, 094101, 2009.
  • [17] Özışık, H., “GeI2, Re2C, La-Bi ve Ln2O3 (Ln=Sc, Y, La-Lu) bileşiklerinin yapısal, elektronik, mekanik ve titreşimsel özelliklerinin ab inito yöntemlerle incelenmesi”. Gazi Üniversitesi Fen Bilimleri Enstitüsü – Doktora Tezi 127 sayfa, 2011.
  • [18] Madelung, O. “Semiconductors: Data handbook. Springer”, 2004.
  • [19] Soykan, C., Kart, S.Ö. “Structural, mechanical and electronic properties of ZnTe polymorphs under pressure”, Journal of Alloys and Compounds, 529, 148-157, 2012.
There are 19 citations in total.

Details

Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Tahsin Özer

Muhammet Karataşlı

Süleyman Çabuk This is me

Publication Date June 1, 2017
Submission Date October 7, 2016
Acceptance Date January 31, 2017
Published in Issue Year 2017

Cite

APA Özer, T., Karataşlı, M., & Çabuk, S. (2017). Investigation of structural and dynamic properties in α -PbO2 phase of SnO2 under pressure. Sakarya University Journal of Science, 21(3), 411-419. https://doi.org/10.16984/saufenbilder.298940
AMA Özer T, Karataşlı M, Çabuk S. Investigation of structural and dynamic properties in α -PbO2 phase of SnO2 under pressure. SAUJS. June 2017;21(3):411-419. doi:10.16984/saufenbilder.298940
Chicago Özer, Tahsin, Muhammet Karataşlı, and Süleyman Çabuk. “Investigation of Structural and Dynamic Properties in α -PbO2 Phase of SnO2 under Pressure”. Sakarya University Journal of Science 21, no. 3 (June 2017): 411-19. https://doi.org/10.16984/saufenbilder.298940.
EndNote Özer T, Karataşlı M, Çabuk S (June 1, 2017) Investigation of structural and dynamic properties in α -PbO2 phase of SnO2 under pressure. Sakarya University Journal of Science 21 3 411–419.
IEEE T. Özer, M. Karataşlı, and S. Çabuk, “Investigation of structural and dynamic properties in α -PbO2 phase of SnO2 under pressure”, SAUJS, vol. 21, no. 3, pp. 411–419, 2017, doi: 10.16984/saufenbilder.298940.
ISNAD Özer, Tahsin et al. “Investigation of Structural and Dynamic Properties in α -PbO2 Phase of SnO2 under Pressure”. Sakarya University Journal of Science 21/3 (June 2017), 411-419. https://doi.org/10.16984/saufenbilder.298940.
JAMA Özer T, Karataşlı M, Çabuk S. Investigation of structural and dynamic properties in α -PbO2 phase of SnO2 under pressure. SAUJS. 2017;21:411–419.
MLA Özer, Tahsin et al. “Investigation of Structural and Dynamic Properties in α -PbO2 Phase of SnO2 under Pressure”. Sakarya University Journal of Science, vol. 21, no. 3, 2017, pp. 411-9, doi:10.16984/saufenbilder.298940.
Vancouver Özer T, Karataşlı M, Çabuk S. Investigation of structural and dynamic properties in α -PbO2 phase of SnO2 under pressure. SAUJS. 2017;21(3):411-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.