Research Article
BibTex RIS Cite

Analyzing the effects of biomass and coal ash for the dewatering properties of sewage sludge

Year 2017, , 907 - 914, 01.10.2017
https://doi.org/10.16984/saufenbilder.301609

Abstract

Diminishing the amount of water in sewage sludges is the most determinant factor in terms of increasing the options of removing and being reduced the number of sludges to remove. In the current situation, the most preferred methods are the mechanic methods for sludge dewatering. But, the quenching features of the sludge must be improved and the conditioning procedures need to be actualized by adding polyelectrolyte into the sludge to enhance the productivity of the mechanical methods. As an alternative to the use of polyelectrolyte in sludge conditioning procedure, the effects of the use of biomass and coal ash on the quenching features are analyzed in this research. For this purpose, the biomass and the coal ash were mixed with the sewage sludges in different ratios. The 1/1000 cationic polyelectrolyte solution was used as the control application. According to the results obtained from the study, as the ash content in the mixtures increases, the specific resistance to filtration (SRF) and the filter cake moisture content (FCM), which are the most important indicators of water quenching properties, have been significantly reduced. The closest results to the polyelectrolyte application (SRF 2,8.1011 m.kg-1, FCM: % 58,96) used as the control were obtained from the BC6 application (SRF: 29.1011 m.kg-1, FCM: % 65,92) where the highest ratio of biomass ash used. Moreover, the results of the implementations of biomass and coal ash are determined as statistically similar (R2=0,99). In the content of biomass and coal ash heavy metals, it is seen that the ratios of heavy metal of biomass ash are lower for all values other than Zn. It is thought according to these results that the biomass and coal ash can be used to improve the dewatering features of domestic waste water treatment sludges. However, considering the heavy metal level of the sludge, it can be said that the best alternative is the use of biomass ash for increasing the disposal options after dewatering.

References

  • [1]. Ş. Yıldız, E. Yılmaz ve E. Ölmez, “Evsel Nitelikli Arıtma Çamurlarının Stabilizasyonla Bertaraf Alternatifleri: İstanbul Örneği”, Türkiye’ de Katı Atık Yönetim Sempozyumu (TÜRKAY 2009) YTÜ, 15-17 Haziran, İstanbul, 2009.
  • [2]. H. Yasui ve M. Shibata, “An innovative approach to reduce excess sludge production in the activated sludge process”. Water Science and Technology, sayı 30, 9, pp. 11-20, 1994.
  • [3]. A. Filibeli ve G.E. Kaynak, “Arıtma çamuru miktarının azaltılması ve özelliklerinin iyileştirilmesi amacıyla yapılan ön işlemler” İTÜ dergisi/e Su Kirlenmesi Kontrolü, cilt:16, sayı:1-3, pp. 3-12, 2006.
  • [4]. J.H. Bruss, P.H. Nielsen ve K. Keiding, “On the stability of activated sludge flocs with implications to dewatering”, Water Res. sayı 26, pp. 1597–1640, 1992.
  • [5]. Y. Chen, Y.S. Chen ve G. Gu, “Influence of pretreating activated sludge with acid and surfactant prior to conventional conditioning on filtration dewatering”, Chem. Eng. J. sayı 99 pp. 137–143, 2004.
  • [6]. E. Friedler ve E. Pisanty, “Effects of design flow and treatment level on construction and operation costs of municipal wastewater treatment plants and their implications on policy making”, Water Res. sayı 40, pp. 3751–3758, 2006.
  • [7]. H. Saveyn, G. Pauwels, R. Timmerman ve P.V. Meeren, “Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase”, Water Res. sayı 39, pp. 3012–3020, 2005.
  • [8]. H.F. Van der Roest, P. Roeleveld ve P. Stamperius, “Optimising sludge treatment in the Netherlands”. Water, sayı 21 (8–9), pp. 23–25, 1999.
  • [9]. M.A. Tony, Y.Q. Zhao, J.F. Fu ve A.M. Tayeb, “Conditioning of aluminium-based water treatment sludge with Fenton’s reagent: Effectiveness and optimising study to improve dewaterability”, Chemosphere, sayı 72, pp. 673–677, 2008.
  • [10]. H. Yuan, N. Zhu ve L. Song, “Conditioning of sewage sludge with electrolysis: Effectiveness and optimizing study to improve dewaterability” Bioresource Technology sayı 101 pp. 4285–4290, 2010.
  • [11]. C. Chen, P. Zhangc, G. Zenga, J. Denga, Y. Zhoua ve H. Lud, “Sewage sludge conditioning with coal fly ash modified by sulfuric acid”, Chemical Engineering Journal, sayı 158, pp. 616–622, 2010.
  • [12]. S.V. Vassilev, D. Baxter, L.K. Andersen ve C.G. Vassileva, “An overview of the chemical composition of biomass” Fuel, sayı 89, pp. 913–933, 2010.
  • [13]. X.C. Baxter, L.I. Darvell, J.M. Jones, T. Barraclough, N.E. Yates ve I. Shield, “Miscanthus combustion properties and variations with Miscanthus agronomy” Fuel sayı 117, pp. 851–869, 2014.
  • [14]. O.H. Dede, G. Dede ve S. Ozdemir, “Agricultural and municipal wastes as container media component for ornamental nurseries” International Journal of Environmental Research,.sayı 4, pp.193-200, 2010.
  • [15]. D. Eliche-Quesada ve J. Leite-Costa,” Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks” Waste Management, sayı 48, pp. 323–333, 2016.
  • [16]. W. Lee, S. Kang ve H. Shin, “Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors” Journal of Membrane Science, sayı 216, pp. 217–227, 2003.
  • [17]. C.H. Lee ve J.C. Liu, “Enhanced sludge dewaterıng by dual polyelectrolytes condıtıonıng” Wat. Res. cilt 34, sayı. 18, pp. 4430-4436, 2000.
  • [18]. F. Fornes, R. M. Belda, C. Carrion, V. Noguera, P. Garcia-Agustin ve M. Abad, “Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance” Scientia Horticulturae, sayı 113, pp. 52-59, 2007.
  • [19]. Z. Guo ve W. Liu, “Biomimic from the superhdyrophobic plant leaves in nature: Binary structure and unitary structure” Plant Science, sayı 172, pp 1103-1112, 2007.
  • [20]. S. Özdemir ve N.N. Nuhoğlu “Arıtma Çamurları”, Sakarya Üniveristesi Yayınları No : 120, 2015
  • [21]. N. Bohm ve W. M. Kulicke, “Optimization of the use of polyelectrolytes for dewatering industrial sludge of various origins” Colloid Polym. Sci. sayı 275, pp. 73-81, 1997.
  • [22]. S. Chitikela ve S. Dentel “Dual chemical condition-ing and dewatering of anaerobically digested biosolids: laboratory evaluations” Wat. Environ. Res. sayı 70, pp. 1062-1069, 1998.
  • [23]. J. Benítez, A. Rodríguez ve A. Suárez, “Optimization technique for sewage sludge conditioning with polymer and skeleton builders”, Water Res. sayı 28, pp. 2067–2073, 1994.
  • [24]. R.J. Wakeman, “Separation technologies for sludge dewatering”, J. Hazard. Mater. sayı 144, pp. 614–619, 2007.

Arıtma çamurlarının su verme özelliklerinin iyileştirilmesinde biyokütle ve kömür külü ilavesinin etkilerinin incelenmesi

Year 2017, , 907 - 914, 01.10.2017
https://doi.org/10.16984/saufenbilder.301609

Abstract

 Arıtma çamurlarının
içerdiği su miktarının düşürülmesi, bertaraf edilecek çamur miktarının
azaltılması ve bertaraf seçeneklerinin artması bakımından en belirleyici
unsurdur. Mevcut durumda çamur susuzlaştırmada en çok kullanılan yöntemler
mekanik yöntemlerdir. Ancak mekanik yöntemlerin veriminin artırılması için,
çamura polielektrolit ilave edilerek şartlandırma işlemi yapılması ve çamurun
su verme özelliklerinin iyileştirilmesi gerekmektedir. Bu çalışmada çamur
şartlandırma işleminde ki polielektrolit kullanımına alternatif olarak
biyokütle ve kömür külü kullanımının, arıtma çamurunun su verme özellikleri
üzerine etkisi incelenmiştir. Bu amaçla biyokütle ve kömür külü değişik
oranlarda arıtma çamurları ile karıştırılmıştır. Kontrol uygulaması olarak da
1/1000’ lik katyonik polielektrolit çözeltisi kullanılmıştır. Çalışmada elde
edilen sonuçlar göre karışımlardaki kül oranı arttıkça, su verme özelliklerinin
en önemli göstergeleri olan, özgül filtre direnci (ÖFD) ve filtre keki nem
miktarları (FK) önemli ölçüde azalmıştır. Kontrol olarak kullanılan
polielektrolit uygulamasına (ÖFD: 2,8.10
11 m.kg-1, FK: %
58,96) en yakın sonuçlar, en yüksek oranda biyokütle külü kullanılan BÇ
6
uygulamasında (ÖFD: 29.10
11 m.kg-1, FK: % 65,92) elde
edilmiştir. Bununla birlikte biyokütle ve kömür külü uygulamalarının sonuçları
istatistiksel olarak önemli ölçüde benzer bulunmuştur(R
2=0,99).
Biyokütle ve kömür külü ağır metal içeriğinde ise, Zn dışındaki tüm değerlerde,
biyokütle külünün ağır metal oranlarının daha düşük olduğu görülmüştür. Bu
sonuçlara göre, biyokütle ve kömür küllerinin evsel atık su arıtma çamurlarının
su verme özelliklerinin iyileştirilmesinde kullanılabileceği, ancak çamurun
ağır metal düzeyi göz önünde bulundurularak, susuzlaştırmadan sonraki bertaraf
alternatiflerinin artırılması için biyokütle külü kullanımının en iyi
alternatif olduğu söylenebilir.

References

  • [1]. Ş. Yıldız, E. Yılmaz ve E. Ölmez, “Evsel Nitelikli Arıtma Çamurlarının Stabilizasyonla Bertaraf Alternatifleri: İstanbul Örneği”, Türkiye’ de Katı Atık Yönetim Sempozyumu (TÜRKAY 2009) YTÜ, 15-17 Haziran, İstanbul, 2009.
  • [2]. H. Yasui ve M. Shibata, “An innovative approach to reduce excess sludge production in the activated sludge process”. Water Science and Technology, sayı 30, 9, pp. 11-20, 1994.
  • [3]. A. Filibeli ve G.E. Kaynak, “Arıtma çamuru miktarının azaltılması ve özelliklerinin iyileştirilmesi amacıyla yapılan ön işlemler” İTÜ dergisi/e Su Kirlenmesi Kontrolü, cilt:16, sayı:1-3, pp. 3-12, 2006.
  • [4]. J.H. Bruss, P.H. Nielsen ve K. Keiding, “On the stability of activated sludge flocs with implications to dewatering”, Water Res. sayı 26, pp. 1597–1640, 1992.
  • [5]. Y. Chen, Y.S. Chen ve G. Gu, “Influence of pretreating activated sludge with acid and surfactant prior to conventional conditioning on filtration dewatering”, Chem. Eng. J. sayı 99 pp. 137–143, 2004.
  • [6]. E. Friedler ve E. Pisanty, “Effects of design flow and treatment level on construction and operation costs of municipal wastewater treatment plants and their implications on policy making”, Water Res. sayı 40, pp. 3751–3758, 2006.
  • [7]. H. Saveyn, G. Pauwels, R. Timmerman ve P.V. Meeren, “Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase”, Water Res. sayı 39, pp. 3012–3020, 2005.
  • [8]. H.F. Van der Roest, P. Roeleveld ve P. Stamperius, “Optimising sludge treatment in the Netherlands”. Water, sayı 21 (8–9), pp. 23–25, 1999.
  • [9]. M.A. Tony, Y.Q. Zhao, J.F. Fu ve A.M. Tayeb, “Conditioning of aluminium-based water treatment sludge with Fenton’s reagent: Effectiveness and optimising study to improve dewaterability”, Chemosphere, sayı 72, pp. 673–677, 2008.
  • [10]. H. Yuan, N. Zhu ve L. Song, “Conditioning of sewage sludge with electrolysis: Effectiveness and optimizing study to improve dewaterability” Bioresource Technology sayı 101 pp. 4285–4290, 2010.
  • [11]. C. Chen, P. Zhangc, G. Zenga, J. Denga, Y. Zhoua ve H. Lud, “Sewage sludge conditioning with coal fly ash modified by sulfuric acid”, Chemical Engineering Journal, sayı 158, pp. 616–622, 2010.
  • [12]. S.V. Vassilev, D. Baxter, L.K. Andersen ve C.G. Vassileva, “An overview of the chemical composition of biomass” Fuel, sayı 89, pp. 913–933, 2010.
  • [13]. X.C. Baxter, L.I. Darvell, J.M. Jones, T. Barraclough, N.E. Yates ve I. Shield, “Miscanthus combustion properties and variations with Miscanthus agronomy” Fuel sayı 117, pp. 851–869, 2014.
  • [14]. O.H. Dede, G. Dede ve S. Ozdemir, “Agricultural and municipal wastes as container media component for ornamental nurseries” International Journal of Environmental Research,.sayı 4, pp.193-200, 2010.
  • [15]. D. Eliche-Quesada ve J. Leite-Costa,” Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks” Waste Management, sayı 48, pp. 323–333, 2016.
  • [16]. W. Lee, S. Kang ve H. Shin, “Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors” Journal of Membrane Science, sayı 216, pp. 217–227, 2003.
  • [17]. C.H. Lee ve J.C. Liu, “Enhanced sludge dewaterıng by dual polyelectrolytes condıtıonıng” Wat. Res. cilt 34, sayı. 18, pp. 4430-4436, 2000.
  • [18]. F. Fornes, R. M. Belda, C. Carrion, V. Noguera, P. Garcia-Agustin ve M. Abad, “Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance” Scientia Horticulturae, sayı 113, pp. 52-59, 2007.
  • [19]. Z. Guo ve W. Liu, “Biomimic from the superhdyrophobic plant leaves in nature: Binary structure and unitary structure” Plant Science, sayı 172, pp 1103-1112, 2007.
  • [20]. S. Özdemir ve N.N. Nuhoğlu “Arıtma Çamurları”, Sakarya Üniveristesi Yayınları No : 120, 2015
  • [21]. N. Bohm ve W. M. Kulicke, “Optimization of the use of polyelectrolytes for dewatering industrial sludge of various origins” Colloid Polym. Sci. sayı 275, pp. 73-81, 1997.
  • [22]. S. Chitikela ve S. Dentel “Dual chemical condition-ing and dewatering of anaerobically digested biosolids: laboratory evaluations” Wat. Environ. Res. sayı 70, pp. 1062-1069, 1998.
  • [23]. J. Benítez, A. Rodríguez ve A. Suárez, “Optimization technique for sewage sludge conditioning with polymer and skeleton builders”, Water Res. sayı 28, pp. 2067–2073, 1994.
  • [24]. R.J. Wakeman, “Separation technologies for sludge dewatering”, J. Hazard. Mater. sayı 144, pp. 614–619, 2007.
There are 24 citations in total.

Details

Subjects Environmental Engineering
Journal Section Research Articles
Authors

Ömer Hulusi Dede

Derya Akbulut

Publication Date October 1, 2017
Submission Date March 28, 2017
Acceptance Date June 1, 2017
Published in Issue Year 2017

Cite

APA Dede, Ö. H., & Akbulut, D. (2017). Analyzing the effects of biomass and coal ash for the dewatering properties of sewage sludge. Sakarya University Journal of Science, 21(5), 907-914. https://doi.org/10.16984/saufenbilder.301609
AMA Dede ÖH, Akbulut D. Analyzing the effects of biomass and coal ash for the dewatering properties of sewage sludge. SAUJS. October 2017;21(5):907-914. doi:10.16984/saufenbilder.301609
Chicago Dede, Ömer Hulusi, and Derya Akbulut. “Analyzing the Effects of Biomass and Coal Ash for the Dewatering Properties of Sewage Sludge”. Sakarya University Journal of Science 21, no. 5 (October 2017): 907-14. https://doi.org/10.16984/saufenbilder.301609.
EndNote Dede ÖH, Akbulut D (October 1, 2017) Analyzing the effects of biomass and coal ash for the dewatering properties of sewage sludge. Sakarya University Journal of Science 21 5 907–914.
IEEE Ö. H. Dede and D. Akbulut, “Analyzing the effects of biomass and coal ash for the dewatering properties of sewage sludge”, SAUJS, vol. 21, no. 5, pp. 907–914, 2017, doi: 10.16984/saufenbilder.301609.
ISNAD Dede, Ömer Hulusi - Akbulut, Derya. “Analyzing the Effects of Biomass and Coal Ash for the Dewatering Properties of Sewage Sludge”. Sakarya University Journal of Science 21/5 (October 2017), 907-914. https://doi.org/10.16984/saufenbilder.301609.
JAMA Dede ÖH, Akbulut D. Analyzing the effects of biomass and coal ash for the dewatering properties of sewage sludge. SAUJS. 2017;21:907–914.
MLA Dede, Ömer Hulusi and Derya Akbulut. “Analyzing the Effects of Biomass and Coal Ash for the Dewatering Properties of Sewage Sludge”. Sakarya University Journal of Science, vol. 21, no. 5, 2017, pp. 907-14, doi:10.16984/saufenbilder.301609.
Vancouver Dede ÖH, Akbulut D. Analyzing the effects of biomass and coal ash for the dewatering properties of sewage sludge. SAUJS. 2017;21(5):907-14.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.