Research Article
BibTex RIS Cite

Asenkron motor mil çapının motor performansına etkisi

Year 2017, , 604 - 608, 01.08.2017
https://doi.org/10.16984/saufenbilder.309406

Abstract

 Asenkron
motorlar geçmişten günümüze kadar birçok alanda kullanılmış ve teknolojinin
gelişmesiyle birlikte daha farklı alanlarda da kullanılmaya devam etmektedir.
Asenkron motorların veriminde yapılacak bir iyileştirme, enerji tasarrufu
açısından büyük getirilere sebep olacağı açıktır. Bu bağlamda asenkron motor
üretici firmaları ve tasarımcılar motor performansını ve verimini artırabilmek
için sürekli olarak yeni yöntemler denemektedirler. Bu çalışmada ise asenkron
motorun verimini artırabilmek amacıyla mil çapının optimum değerinin ne
olacağı araştırılmıştır. Çalışmada 5.5 kW, 7.5 kW ve 11 kW gücündeki motorlar
için analizler gerçekleştirilmiştir. Elde edilen değerler üretici firmaların
mil çapı değerleri ile karşılaştırılmıştır. Ayrıca motorun manyetik akı
değerleri, ağırlık, performans değerleri gibi kritik noktalar incelenip her
bir motor için optimum mil çapı değerleri tespit edilmiştir.


References

  • S. SEHRA, K. K. GAUTAM and V. BHURIA, “Performance evaluation of three phase induction motor based on no load and blocked rotor test using matlab,” Int. J. Sci. Environ. Technol., vol. 1, no. 5, pp. 541–547, 2012. [2] S. S. SIVARAJU, N. DEVARAJAN and F. J. T. E. FERREIRA, “Performance analysis of induction motor for optimum efficiency and power factor using soft computing technique,” IJEEES Res. Sci. Press, vol. 4, no. 2, pp. 77-86, 2012. [3] V. P. B. AGUIAR, R. S. T. PONTES and T. R. F. NETO, “Study and energy effıciency improvement in the design of an induction motor based on interactive cad software,” Presented at Brazilian Power Electronics Conference, Gramado, pp. 27-31, Oct. 2013. [4] E. AGAMLOH, A. BOGLIETTI and A. CAVAGNINO, “The incremental design efficiency improvement of commercially manufactured induction motors,” Presented at IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, pp. 15-20, Sept. 2012. [5] A. BOGLIETTI, A. CAVAGNINO, M. LAZZARI, A. MIOTTO and S. VASCHETTO, “Induction motor design methodology based on rotor diameter progressive growth,” Presented at IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, pp. 17-22, Sept. 2011. [6] A. J. P. ORTEGA, “Design and comparison of induction motor and synchronous reluctance motor for variable speed applications: design aided by differential evolution and finite element analysis,” M.S. thesis, The Ohio State University, USA, 2013. [7] E. CHIRICOZZI, F. PARASILITI and M. VILLANI, “New materials and innovative technologies to improve the efficiency of three-phase induction motors. A case study,” Presented at Proceedings of the International Conference on Electrical Machines (ICEM 2004), Krakow, Poland, pp. 5-8, Sept. 2004. [8] Y. YANAWATI, I. DAUT, S. N. SHAFIQIN, I. PUNGUT, M. N. SYATIRAH, N. GOMESH, A. R. S. RAFIDAH and N. HAIDAR, “Efficiency increment on 0.35 mm and 0.50 mm thicknesses of non-oriented steel sheets for 0.5 hp induction motor,” Int. J. Mater. Eng., vol. 2, no. 2, pp. 1-5, 2012. [9] P. W. HAN, U. J. SEO, J. H. CHOI, Y. D. CHUN, D. H. KOO and J. LEE, “Optimizing design variables for high efficiency induction motor considering cost effect by using genetic algorithm,” J. Electr. Eng. Technol., vol. 7, no. 6, pp. 948-953, 2012. [10] A. F. KHAZIN, S. RAJENDRAN, M. K. A. KHAN, R. GOBBI and K. ANAYET, “Design of a three phase induction motor based on efficiency improvement using amorphous iron material,” Presented at 2nd Engineering Conference on Sustainable Engineering Infrastructures Development & Management, Kuching, Sarawak, Malaysia, Dec. 2008. [11] A. K. VERMA, S. SARANGI and M. H. KOLEKAR, “Shaft misalignment detection using stator current monitoring,” Int. J. Adv. Comput. Res., vol. 3, no. 1, pp. 305-309, 2013. [12] S. G. KOLGIRI and R. K. PETKAR, “Study of different stresses induced in rotor shaft of electric motor,” Int. J. Appl. Innovation Eng. Manage., vol. 3, no. 1, pp. 167-175, 2014. [13] A. H. BONNETT, “Root cause ac motor failure analysis with a focus on shaft failures,” IEEE Trans. Ind. Appl., vol. 36, no. 5, pp. 1435-1448, 2000. [14] V. K. SINGH, S. CHATTERJI and L. MATHEW, “Bearing fault detection of an induction motor using non-stationary signal analysis,” Int. J. Adv. Res. Comput. Sci. Software Eng., vol. 4, no. 8, pp. 1170-1177, 2014. [15] H. H. KADHIM, “Technical and economic design of three phase induction motor using the multicriterion optimization method,” J. Babylon Univ./Eng. Sci., vol. 22, no. 1, pp. 13-24, 2014. [16] L. ZHANG, Y. HUANG, J. DONG, B. GUO and T. ZHOU, “Stator winding design of induction motors for high efficiency,” Presented at 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, pp. 130-134, Oct. 2014. [17] J. BUKSNAITIS, “New approach for evaluation of electromagnetic properties of three-phase windings,” Electron. Electr. Eng., vol 3, no. 75, pp. 31-36, 2007. [18] I. BOLDEA and S. A. NASAR, “The induction machine handbook,” CRC Pres LLC, Washington, 2002. [19] TS EN 50347, “Endüksiyon motorları–üç fazlı, standard boyutlu ve çıkış güçlü, genel amaçlı-şasi numaraları 56 ilâ 315 ve flanş numaraları 65 ilâ 740,” Türk Standartları Enstitüsü, Ankara, Türkiye, Şubat, 2005. [20] J. H. KUHLMANN, “Elektrik makinalarının hesabı,” 3th ed. 1974. [21] C. YUNG, “Relationship of torque and shaft size,” 2015. [22] ABB, “Motor guide–basic technical information about low voltage standard motors,” pp. 1-128, Feb. 2014. [23] ELSAN ELEKTRİK SAN. VE TİC. A.Ş., “Norm elektrik motorları,” pp. 1-16, 2016. [24] GAMAK, “Genel ürün kataloğu, asenkron motorlar,” pp. 1-104, 2016. [25] LEESON ELECTRIC, “Basic training industrial-duty & commercial-duty electric motors, gear reducers, gear motors, ac & dc drives,” pp. 1-114, 2012. [26] VOLT ELEKTRİK, “Teknik katalog, volt elektrik motorları,” 2016. [27] WAT, “Motor katalog,” pp. 1-56, 2016. [28] MIKSAN, “Trifaze motor ölçüleri,” pp. 1, 2016. [29] SIEMENS, “Simotics low voltage motors,” pp. 1-501, Jan. 2012. [30] TESLA, “Series three-phase asynchronous motors, aluminum housing,” pp. 1-4, 2016. [31] CROMPTON GREAVES, “Induction motors, frame 63 to 355 low tension tefc & spdp induction motors,” pp. 1-50, 2016. [32] GRUPO WEG, “Motors, specification of electric motors,” pp. 1-68, 2016.

The effect of induction motor shaft diameter on motor performance

Year 2017, , 604 - 608, 01.08.2017
https://doi.org/10.16984/saufenbilder.309406

Abstract

Induction motors are used in many areas from
the past to the present and in different fields with the development of
technology has continued to be used. It is obvious that induction motors as an
improvement to the efficiency in terms of energy saving would cause great
benefit. In that context, induction motor manufacturers and designers are
constantly trying out new methods to improve motor performance and efficiency.
In this study, what would be the optimum diameter of the shaft in order to
increase the efficiency of the induction motor were investigated. In the
study, 5.5 kW, 7.5 kW and 11 kW motors analyzes were also performed. Obtained
shaft diameter values were compared with the manufacturer values. In addition,
critical points such as the magnetic flux values, weight values and
performances of the motors were examined and optimal shaft diameter values for
each motor have been determined.

References

  • S. SEHRA, K. K. GAUTAM and V. BHURIA, “Performance evaluation of three phase induction motor based on no load and blocked rotor test using matlab,” Int. J. Sci. Environ. Technol., vol. 1, no. 5, pp. 541–547, 2012. [2] S. S. SIVARAJU, N. DEVARAJAN and F. J. T. E. FERREIRA, “Performance analysis of induction motor for optimum efficiency and power factor using soft computing technique,” IJEEES Res. Sci. Press, vol. 4, no. 2, pp. 77-86, 2012. [3] V. P. B. AGUIAR, R. S. T. PONTES and T. R. F. NETO, “Study and energy effıciency improvement in the design of an induction motor based on interactive cad software,” Presented at Brazilian Power Electronics Conference, Gramado, pp. 27-31, Oct. 2013. [4] E. AGAMLOH, A. BOGLIETTI and A. CAVAGNINO, “The incremental design efficiency improvement of commercially manufactured induction motors,” Presented at IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, pp. 15-20, Sept. 2012. [5] A. BOGLIETTI, A. CAVAGNINO, M. LAZZARI, A. MIOTTO and S. VASCHETTO, “Induction motor design methodology based on rotor diameter progressive growth,” Presented at IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, pp. 17-22, Sept. 2011. [6] A. J. P. ORTEGA, “Design and comparison of induction motor and synchronous reluctance motor for variable speed applications: design aided by differential evolution and finite element analysis,” M.S. thesis, The Ohio State University, USA, 2013. [7] E. CHIRICOZZI, F. PARASILITI and M. VILLANI, “New materials and innovative technologies to improve the efficiency of three-phase induction motors. A case study,” Presented at Proceedings of the International Conference on Electrical Machines (ICEM 2004), Krakow, Poland, pp. 5-8, Sept. 2004. [8] Y. YANAWATI, I. DAUT, S. N. SHAFIQIN, I. PUNGUT, M. N. SYATIRAH, N. GOMESH, A. R. S. RAFIDAH and N. HAIDAR, “Efficiency increment on 0.35 mm and 0.50 mm thicknesses of non-oriented steel sheets for 0.5 hp induction motor,” Int. J. Mater. Eng., vol. 2, no. 2, pp. 1-5, 2012. [9] P. W. HAN, U. J. SEO, J. H. CHOI, Y. D. CHUN, D. H. KOO and J. LEE, “Optimizing design variables for high efficiency induction motor considering cost effect by using genetic algorithm,” J. Electr. Eng. Technol., vol. 7, no. 6, pp. 948-953, 2012. [10] A. F. KHAZIN, S. RAJENDRAN, M. K. A. KHAN, R. GOBBI and K. ANAYET, “Design of a three phase induction motor based on efficiency improvement using amorphous iron material,” Presented at 2nd Engineering Conference on Sustainable Engineering Infrastructures Development & Management, Kuching, Sarawak, Malaysia, Dec. 2008. [11] A. K. VERMA, S. SARANGI and M. H. KOLEKAR, “Shaft misalignment detection using stator current monitoring,” Int. J. Adv. Comput. Res., vol. 3, no. 1, pp. 305-309, 2013. [12] S. G. KOLGIRI and R. K. PETKAR, “Study of different stresses induced in rotor shaft of electric motor,” Int. J. Appl. Innovation Eng. Manage., vol. 3, no. 1, pp. 167-175, 2014. [13] A. H. BONNETT, “Root cause ac motor failure analysis with a focus on shaft failures,” IEEE Trans. Ind. Appl., vol. 36, no. 5, pp. 1435-1448, 2000. [14] V. K. SINGH, S. CHATTERJI and L. MATHEW, “Bearing fault detection of an induction motor using non-stationary signal analysis,” Int. J. Adv. Res. Comput. Sci. Software Eng., vol. 4, no. 8, pp. 1170-1177, 2014. [15] H. H. KADHIM, “Technical and economic design of three phase induction motor using the multicriterion optimization method,” J. Babylon Univ./Eng. Sci., vol. 22, no. 1, pp. 13-24, 2014. [16] L. ZHANG, Y. HUANG, J. DONG, B. GUO and T. ZHOU, “Stator winding design of induction motors for high efficiency,” Presented at 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, pp. 130-134, Oct. 2014. [17] J. BUKSNAITIS, “New approach for evaluation of electromagnetic properties of three-phase windings,” Electron. Electr. Eng., vol 3, no. 75, pp. 31-36, 2007. [18] I. BOLDEA and S. A. NASAR, “The induction machine handbook,” CRC Pres LLC, Washington, 2002. [19] TS EN 50347, “Endüksiyon motorları–üç fazlı, standard boyutlu ve çıkış güçlü, genel amaçlı-şasi numaraları 56 ilâ 315 ve flanş numaraları 65 ilâ 740,” Türk Standartları Enstitüsü, Ankara, Türkiye, Şubat, 2005. [20] J. H. KUHLMANN, “Elektrik makinalarının hesabı,” 3th ed. 1974. [21] C. YUNG, “Relationship of torque and shaft size,” 2015. [22] ABB, “Motor guide–basic technical information about low voltage standard motors,” pp. 1-128, Feb. 2014. [23] ELSAN ELEKTRİK SAN. VE TİC. A.Ş., “Norm elektrik motorları,” pp. 1-16, 2016. [24] GAMAK, “Genel ürün kataloğu, asenkron motorlar,” pp. 1-104, 2016. [25] LEESON ELECTRIC, “Basic training industrial-duty & commercial-duty electric motors, gear reducers, gear motors, ac & dc drives,” pp. 1-114, 2012. [26] VOLT ELEKTRİK, “Teknik katalog, volt elektrik motorları,” 2016. [27] WAT, “Motor katalog,” pp. 1-56, 2016. [28] MIKSAN, “Trifaze motor ölçüleri,” pp. 1, 2016. [29] SIEMENS, “Simotics low voltage motors,” pp. 1-501, Jan. 2012. [30] TESLA, “Series three-phase asynchronous motors, aluminum housing,” pp. 1-4, 2016. [31] CROMPTON GREAVES, “Induction motors, frame 63 to 355 low tension tefc & spdp induction motors,” pp. 1-50, 2016. [32] GRUPO WEG, “Motors, specification of electric motors,” pp. 1-68, 2016.
There are 1 citations in total.

Details

Subjects Electrical Engineering
Journal Section Research Articles
Authors

Asım Gökhan Yetgin This is me

Publication Date August 1, 2017
Submission Date April 27, 2017
Acceptance Date April 23, 2017
Published in Issue Year 2017

Cite

APA Yetgin, A. G. (2017). The effect of induction motor shaft diameter on motor performance. Sakarya University Journal of Science, 21(4), 604-608. https://doi.org/10.16984/saufenbilder.309406
AMA Yetgin AG. The effect of induction motor shaft diameter on motor performance. SAUJS. August 2017;21(4):604-608. doi:10.16984/saufenbilder.309406
Chicago Yetgin, Asım Gökhan. “The Effect of Induction Motor Shaft Diameter on Motor Performance”. Sakarya University Journal of Science 21, no. 4 (August 2017): 604-8. https://doi.org/10.16984/saufenbilder.309406.
EndNote Yetgin AG (August 1, 2017) The effect of induction motor shaft diameter on motor performance. Sakarya University Journal of Science 21 4 604–608.
IEEE A. G. Yetgin, “The effect of induction motor shaft diameter on motor performance”, SAUJS, vol. 21, no. 4, pp. 604–608, 2017, doi: 10.16984/saufenbilder.309406.
ISNAD Yetgin, Asım Gökhan. “The Effect of Induction Motor Shaft Diameter on Motor Performance”. Sakarya University Journal of Science 21/4 (August 2017), 604-608. https://doi.org/10.16984/saufenbilder.309406.
JAMA Yetgin AG. The effect of induction motor shaft diameter on motor performance. SAUJS. 2017;21:604–608.
MLA Yetgin, Asım Gökhan. “The Effect of Induction Motor Shaft Diameter on Motor Performance”. Sakarya University Journal of Science, vol. 21, no. 4, 2017, pp. 604-8, doi:10.16984/saufenbilder.309406.
Vancouver Yetgin AG. The effect of induction motor shaft diameter on motor performance. SAUJS. 2017;21(4):604-8.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.