Fire Simulation and Investigation of the Smoke Removal Strategies for Sakarya University M-7 Hall
Year 2018,
, 135 - 149, 01.04.2018
Gökhan Coşkun
,
Usame Demir
,
Hakan Serhad Soyhan
Abstract
In this study several strategies for smoke removal in M7 building of engineering faculty are developed. In these
scenarios the air velocity is kept in the lowest level and the developed model was investigated by using FDS
software. Five scenarios were examined depending on windows and skylighting open or close positions, and a case
having smoke removal fan mounted in the skylighting area. All simulations were run with evocation doors in open
position. Scenarios are; all windows casements are closed, all windows single casements are open, all windows
casements are open, skylighting open while all windows casements close and finally with smoke removal fan active
at the skylighting area. From the simulation results slowest smoke propagation in the building obtained at the smoke
removal fan used case.
References
- [1] L. Fang, P. V. Nielsen, H. Brohus, “Investigation on
smoke movement and smoke control for atrium in green
and sustainable buildings”, Aalborg University,
Department of Civil Engineering Technical Report No.
32, 2007.
[2] J. Jie, L. Kaiyuan, Z. Wei, H. Ran, “Experimental
investigation on influence of smoke venting velocity
and vent height on mechanical smoke exhaust
efficiency”, Journal of Hazardous Materials, Cilt 177,
Sayı 1–3, pp. 209-215, 2010.
[3] K. McGrattan, R McDermott, S. Hostikka, J. Floyd,
“NIST Special Publication 1019 Fire Dynamics
Simulator (Version 6.1.2) User's Guide”, NIST, 2015.
[4] W.K. Chow, “Application of Computational fluid
dynamics in building services engineering”, Build.
Environ. Cilt 31, pp. 425–436, 1996)
[5] G. W. Zou, W. K. Chow, “Evaluation of the Field
Model, Fire Dynamics Simulator, for a Specific
Experimental Scenario”, Journal of Fire Protection
Engineering, 15: 77, 2005.
[6] L.H. Hua, N.K. Fong b, L.Z. Yang a, W.K. Chowb,
Y.Z. Li a, R. Huoa, “Modeling fire-induced smoke
spread and carbon monoxidetransportation in a long
channel: Fire Dynamics Simulator comparisons with
measured data”, Journal of Hazardous Materials, cilt
140, pp. 293–298, 2007.
[7] V.A. Oven, N. Cakici, “Modelling the evacuation of
high-rise Office building in İstanbul”, Fire Safety
Journal, vol. 44, pp. 1-15, 2009.
[8] T-S. Shen, Y-H. Huang, S.-W. Chien, “Using fire
dynamic simulation (FDS) to reconstruct an arson fire
scene”, Building and Environment, vol. 43, pp. 1036–
1045, 2008.
[9] Z. Xu, X. Z. Lu, H. Guan, C. Chen, and A. Z. Ren,
"A virtual reality based fire training simulator with
smoke hazard assessment capacity," Advances in
Engineering Software, vol. 68, pp. 1-8, 2014.
[10] X.G. Zhanga, Y.C. Guoa, C.K. Chanb, W.Y. Lina,
“Numerical simulations on fire spread and smoke
movement in an underground car park”, Building and
Environment, cilt 42, pp. 3466–3475, 2007.
[11] X. Zhang, X. Wang, Y. Zhou, “Numerical
simulation study on bus fire”, International Conference
on Remote Sensing, Environment and Transportation
Engineering, 2011.
[12] http://www.thunderheadeng.com/pyrosim/ (Erişim
tarihi: 15.04.2017)
[13] Seçilmiş Göstergelerle Sakarya 2013, Türkiye
İstatistik Kurumu. Yayın No: 4218 ISSN: 1307-0894
Sakarya Üniversitesi M-7 Binası için Yangın Simülasyonu ve Duman Tahliye Stratejilerinin İncelenmesi
Year 2018,
, 135 - 149, 01.04.2018
Gökhan Coşkun
,
Usame Demir
,
Hakan Serhad Soyhan
Abstract
Bu çalışmada, bina içi hava hızını mümkün olabilecek en az seviyede arttıran farklı duman tahliye senaryoları ve
stratejileri FDS yazılımı ile bilgisayar ortamında modellenerek incelenmiştir. M-7 binası pencereleri ve binanın
terasındaki ışıklık bölgesinin açık ve kapalı olması durumu ile ışıklık bölgesine duman tahliye fanı eklenmesi
durumuna olmak üzere beş farklı senaryo incelenmiştir. Tüm simülasyonlar yangın merdiveni acil çıkış kapıları açık
konumda iken çalıştırılmıştır. Bu senaryolar; tüm pencereler kapalı, tüm pencerelerin tek kanatları açık, tüm
pencerelerin her iki kanadı açık, tüm pencereler kapalı iken ışıklık penceresi açık ve son olarak ışıklık bölgesinde
duman tahliye fanı çalıştırılması durumları olarak sıralanabilir. Simülasyon sonuçları tüm binaya duman yayılımının
en uzun sürdüğü senaryonun fanın kullanıldığı durum için ortaya çıktığını göstermiştir.
References
- [1] L. Fang, P. V. Nielsen, H. Brohus, “Investigation on
smoke movement and smoke control for atrium in green
and sustainable buildings”, Aalborg University,
Department of Civil Engineering Technical Report No.
32, 2007.
[2] J. Jie, L. Kaiyuan, Z. Wei, H. Ran, “Experimental
investigation on influence of smoke venting velocity
and vent height on mechanical smoke exhaust
efficiency”, Journal of Hazardous Materials, Cilt 177,
Sayı 1–3, pp. 209-215, 2010.
[3] K. McGrattan, R McDermott, S. Hostikka, J. Floyd,
“NIST Special Publication 1019 Fire Dynamics
Simulator (Version 6.1.2) User's Guide”, NIST, 2015.
[4] W.K. Chow, “Application of Computational fluid
dynamics in building services engineering”, Build.
Environ. Cilt 31, pp. 425–436, 1996)
[5] G. W. Zou, W. K. Chow, “Evaluation of the Field
Model, Fire Dynamics Simulator, for a Specific
Experimental Scenario”, Journal of Fire Protection
Engineering, 15: 77, 2005.
[6] L.H. Hua, N.K. Fong b, L.Z. Yang a, W.K. Chowb,
Y.Z. Li a, R. Huoa, “Modeling fire-induced smoke
spread and carbon monoxidetransportation in a long
channel: Fire Dynamics Simulator comparisons with
measured data”, Journal of Hazardous Materials, cilt
140, pp. 293–298, 2007.
[7] V.A. Oven, N. Cakici, “Modelling the evacuation of
high-rise Office building in İstanbul”, Fire Safety
Journal, vol. 44, pp. 1-15, 2009.
[8] T-S. Shen, Y-H. Huang, S.-W. Chien, “Using fire
dynamic simulation (FDS) to reconstruct an arson fire
scene”, Building and Environment, vol. 43, pp. 1036–
1045, 2008.
[9] Z. Xu, X. Z. Lu, H. Guan, C. Chen, and A. Z. Ren,
"A virtual reality based fire training simulator with
smoke hazard assessment capacity," Advances in
Engineering Software, vol. 68, pp. 1-8, 2014.
[10] X.G. Zhanga, Y.C. Guoa, C.K. Chanb, W.Y. Lina,
“Numerical simulations on fire spread and smoke
movement in an underground car park”, Building and
Environment, cilt 42, pp. 3466–3475, 2007.
[11] X. Zhang, X. Wang, Y. Zhou, “Numerical
simulation study on bus fire”, International Conference
on Remote Sensing, Environment and Transportation
Engineering, 2011.
[12] http://www.thunderheadeng.com/pyrosim/ (Erişim
tarihi: 15.04.2017)
[13] Seçilmiş Göstergelerle Sakarya 2013, Türkiye
İstatistik Kurumu. Yayın No: 4218 ISSN: 1307-0894