Research Article
BibTex RIS Cite

Cooling of the heated circular porous disc with a circular jet

Year 2019, , 676 - 695, 01.08.2019
https://doi.org/10.16984/saufenbilder.515687

Abstract

In this
study, an experimental analysis has been performed on jet impingement onto close-cell
porous material which is the shape of a circular porous disc which is aluminum foam. This porous material was located on the circular heater and temperature distribution,
local and average Nusselt number were observed at the different situations.
Experiments were carried out by considering different parameters which are Reynolds
number (1048, 2620, 4192), the thickness
of porous disc (6, 8, 10 mm) and heater power (3.6, 6.8, 10.5 W). The results
show that the maximum average Nu number value is calculated as 464.06 at Re =
4192, P = 10.5 W. It is observed that for the lowest average Nu number value is
obtained at P = 3.6 W and Re = 1048 for without porous material. The lowest
average Nu number value is calculated as 94.201. It is found that the porous
materials can be used to control heat transfer.

References

  • [1] K. Al-Salem, H. F. Oztop, and S. Kiwan, “Effects of porosity and thickness of porous sheets on heat transfer enhancement in a cross flow over heated cylinder,” Int. Commun. Heat Mass Transf., vol. 38, no. 9, pp. 1279–1282, 2011.
  • [2] M. Prakash, Ö. F. Turan, Y. Li, J. Mahoney, and G. R. Thorpe, “Impinging round jet studies in a cylindrical enclosure with and without a porous layer: Part I - Flow visualisations and simulations,” Chem. Eng. Sci., vol. 56, no. 12, pp. 3855–3878, 2001.
  • [3] P. Selvaraj, K. Natesan, K. Velusamy, and T. Sundararajan, “Cooling of small size irradiation specimens using impinging jets,” Int. Commun. Heat Mass Transf., vol. 84, pp. 20–26, 2017.
  • [4] S. Naderipour, T. Yousefi, M. Ashjaee, and D. Naylor, “Mixed convection cooling of a cylinder using slot jet impingement at different circumferential angles,” Heat Mass Transf. und Stoffuebertragung, vol. 52, no. 8, pp. 1443–1453, 2016.
  • [5] M. Attalla and M. Salem, “Effect of nozzle geometry on heat transfer characteristics from a single circular air jet,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 723–733, 2013.
  • [6] M. a. R. Sharif, “Heat Transfer From an Isothermally Heated Flat Surface Due to Confined Laminar Twin Oblique Slot-Jet Impingement,” J. Therm. Sci. Eng. Appl., vol. 7, no. 3, p. 031001, 2015.
  • [7] F. Selimefendigil and H. F. Öztop, “Effects of Nanoparticle Shape on Slot-Jet Impingement Cooling of a Corrugated Surface With Nanofluids,” J. Therm. Sci. Eng. Appl., vol. 9, no. 2, p. 021016, 2017.
  • [8] T. M. Jeng and S. C. Tzeng, “Numerical study of confined slot jet impinging on porous metallic foam heat sink,” Int. J. Heat Mass Transf., vol. 48, no. 23–24, pp. 4685–4694, 2005.
  • [9] D. R. Graminho and M. J. S. de Lemos, “Simulation of turbulent impinging jet into a cylindrical chamber with and without a porous layer at the bottom,” Int. J. Heat Mass Transf., vol. 52, no. 3–4, pp. 680–693, 2009.
  • [10] A. P. Rallabandi, D. H. Rhee, Z. Gao, and J. C. Han, “Heat transfer enhancement in rectangular channels with axial ribs or porous foam under through flow and impinging jet conditions,” Int. J. Heat Mass Transf., vol. 53, no. 21–22, pp. 4663–4671, 2010.
  • [11] F. T. Dórea and M. J. S. De Lemos, “Simulation of laminar impinging jet on a porous medium with a thermal non-equilibrium model,” Int. J. Heat Mass Transf., vol. 53, no. 23–24, pp. 5089–5101, 2010.
  • [12] W.-S. Fu and H.-C. Huang, “Thermal performances of different shape porous blocks under an impinging jet,” Int. J. Heat Mass Transf., vol. 40, no. 10, pp. 2261–2272, 1997.
Year 2019, , 676 - 695, 01.08.2019
https://doi.org/10.16984/saufenbilder.515687

Abstract

References

  • [1] K. Al-Salem, H. F. Oztop, and S. Kiwan, “Effects of porosity and thickness of porous sheets on heat transfer enhancement in a cross flow over heated cylinder,” Int. Commun. Heat Mass Transf., vol. 38, no. 9, pp. 1279–1282, 2011.
  • [2] M. Prakash, Ö. F. Turan, Y. Li, J. Mahoney, and G. R. Thorpe, “Impinging round jet studies in a cylindrical enclosure with and without a porous layer: Part I - Flow visualisations and simulations,” Chem. Eng. Sci., vol. 56, no. 12, pp. 3855–3878, 2001.
  • [3] P. Selvaraj, K. Natesan, K. Velusamy, and T. Sundararajan, “Cooling of small size irradiation specimens using impinging jets,” Int. Commun. Heat Mass Transf., vol. 84, pp. 20–26, 2017.
  • [4] S. Naderipour, T. Yousefi, M. Ashjaee, and D. Naylor, “Mixed convection cooling of a cylinder using slot jet impingement at different circumferential angles,” Heat Mass Transf. und Stoffuebertragung, vol. 52, no. 8, pp. 1443–1453, 2016.
  • [5] M. Attalla and M. Salem, “Effect of nozzle geometry on heat transfer characteristics from a single circular air jet,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 723–733, 2013.
  • [6] M. a. R. Sharif, “Heat Transfer From an Isothermally Heated Flat Surface Due to Confined Laminar Twin Oblique Slot-Jet Impingement,” J. Therm. Sci. Eng. Appl., vol. 7, no. 3, p. 031001, 2015.
  • [7] F. Selimefendigil and H. F. Öztop, “Effects of Nanoparticle Shape on Slot-Jet Impingement Cooling of a Corrugated Surface With Nanofluids,” J. Therm. Sci. Eng. Appl., vol. 9, no. 2, p. 021016, 2017.
  • [8] T. M. Jeng and S. C. Tzeng, “Numerical study of confined slot jet impinging on porous metallic foam heat sink,” Int. J. Heat Mass Transf., vol. 48, no. 23–24, pp. 4685–4694, 2005.
  • [9] D. R. Graminho and M. J. S. de Lemos, “Simulation of turbulent impinging jet into a cylindrical chamber with and without a porous layer at the bottom,” Int. J. Heat Mass Transf., vol. 52, no. 3–4, pp. 680–693, 2009.
  • [10] A. P. Rallabandi, D. H. Rhee, Z. Gao, and J. C. Han, “Heat transfer enhancement in rectangular channels with axial ribs or porous foam under through flow and impinging jet conditions,” Int. J. Heat Mass Transf., vol. 53, no. 21–22, pp. 4663–4671, 2010.
  • [11] F. T. Dórea and M. J. S. De Lemos, “Simulation of laminar impinging jet on a porous medium with a thermal non-equilibrium model,” Int. J. Heat Mass Transf., vol. 53, no. 23–24, pp. 5089–5101, 2010.
  • [12] W.-S. Fu and H.-C. Huang, “Thermal performances of different shape porous blocks under an impinging jet,” Int. J. Heat Mass Transf., vol. 40, no. 10, pp. 2261–2272, 1997.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Mert Gürtürk 0000-0003-0380-5704

Hakan F. Oztop

Publication Date August 1, 2019
Submission Date January 21, 2019
Acceptance Date February 21, 2019
Published in Issue Year 2019

Cite

APA Gürtürk, M., & Oztop, H. F. (2019). Cooling of the heated circular porous disc with a circular jet. Sakarya University Journal of Science, 23(4), 676-695. https://doi.org/10.16984/saufenbilder.515687
AMA Gürtürk M, Oztop HF. Cooling of the heated circular porous disc with a circular jet. SAUJS. August 2019;23(4):676-695. doi:10.16984/saufenbilder.515687
Chicago Gürtürk, Mert, and Hakan F. Oztop. “Cooling of the Heated Circular Porous Disc With a Circular Jet”. Sakarya University Journal of Science 23, no. 4 (August 2019): 676-95. https://doi.org/10.16984/saufenbilder.515687.
EndNote Gürtürk M, Oztop HF (August 1, 2019) Cooling of the heated circular porous disc with a circular jet. Sakarya University Journal of Science 23 4 676–695.
IEEE M. Gürtürk and H. F. Oztop, “Cooling of the heated circular porous disc with a circular jet”, SAUJS, vol. 23, no. 4, pp. 676–695, 2019, doi: 10.16984/saufenbilder.515687.
ISNAD Gürtürk, Mert - Oztop, Hakan F. “Cooling of the Heated Circular Porous Disc With a Circular Jet”. Sakarya University Journal of Science 23/4 (August 2019), 676-695. https://doi.org/10.16984/saufenbilder.515687.
JAMA Gürtürk M, Oztop HF. Cooling of the heated circular porous disc with a circular jet. SAUJS. 2019;23:676–695.
MLA Gürtürk, Mert and Hakan F. Oztop. “Cooling of the Heated Circular Porous Disc With a Circular Jet”. Sakarya University Journal of Science, vol. 23, no. 4, 2019, pp. 676-95, doi:10.16984/saufenbilder.515687.
Vancouver Gürtürk M, Oztop HF. Cooling of the heated circular porous disc with a circular jet. SAUJS. 2019;23(4):676-95.