Research Article
BibTex RIS Cite
Year 2020, , 1081 - 1093, 01.10.2020
https://doi.org/10.16984/saufenbilder.526957

Abstract

References

  • M. J. Sánchez-Martín, M. C. Dorado, C. del Hoyo, and M. S. Rodríguez-Cruz, “Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays,” J. Hazard. Mater., vol. 150, no. 1, pp. 115–123, Jan. 2008, doi: 10.1016/j.jhazmat.2007.04.093.
  • M. Doğan, M. H. Karaoğlu, and M. Alkan, “Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite.,” J. Hazard. Mater., vol. 165, no. 1–3, pp. 1142–51, Jun. 2009, doi: 10.1016/j.jhazmat.2008.10.101.
  • G. Jing, Z. Sun, P. Ye, S. Wei, and Y. Liang, “Clays for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: a review,” Water Pract. Technol., vol. 12, no. 2, pp. 432–443, Jun. 2017, doi: 10.2166/wpt.2017.046.
  • M. Tanyol, “Removal of Remazol Brilliant Blue R from aueous solutions using raw and modified bentonite,” Kafkas Univ. J. Sci., vol. 9, no. 1, pp. 46–52, 2016, Accessed: Jan. 03, 2019. [Online]. Available: http://dergipark.gov.tr/kujs/issue/30865/338477.
  • A. Ghribi and M. Bagane, “Kinetic modeling for the adsorption of methylene blue from aqueous solutions using Tunisian clay,” in IREC2015 The Sixth International Renewable Energy Congress, Mar. 2015, pp. 1–4, doi: 10.1109/IREC.2015.7110940.
  • P. Liu and L. Zhang, “Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents,” Sep. Purif. Technol., vol. 58, no. 1, pp. 32–39, Dec. 2007, doi: 10.1016/J.SEPPUR.2007.07.007.
  • A. Gürses, Ç. Doǧar, M. Yalçin, M. Açikyildiz, R. Bayrak, and S. Karaca, “The adsorption kinetics of the cationic dye, methylene blue, onto clay,” J. Hazard. Mater., vol. 131, no. 1–3, pp. 217–228, Apr. 2006, doi: 10.1016/j.jhazmat.2005.09.036.
  • S. S. Tahir and N. Rauf, “Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay,” Chemosphere, vol. 63, no. 11, pp. 1842–1848, Jun. 2006, doi: 10.1016/j.chemosphere.2005.10.033.
  • E. Errais, J. Duplay, F. Darragi, I. M'Rabet, A. Aubert, F. Huber, G. Morvan, “Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters,” Desalination, vol. 275, no. 1–3, pp. 74–81, Jul. 2011, doi: 10.1016/j.desal.2011.02.031.
  • N. Abidi, E.Errais, J. Duplay, A. Berez, A. Jrad, G. Schäfer, M. Ghazi, K. Semhi, M. Trabelsi-Ayadi, “Treatment of dye-containing effluent by natural clay,” J. Clean. Prod., vol. 86, pp. 432–440, Jan. 2015, doi: 10.1016/J.JCLEPRO.2014.08.043.
  • Z. Hicham, Z. Bencheqroun, I. El Mrabet, M. Kachabi, M. Nawdali, and I. Neves, “Removal of Basic Dyes from Aqueous Solutions by Adsorption onto Moroccan Clay (Fez City),” Mediterr. J. Chem., vol. 8, no. 3, pp. 158–167, May 2019, doi: 10.13171/mjc8319050803hz.
  • E. Kayman, “Adsorption of lead ions from aqueous solutions by activated carbon produced from chestnut shell and apricot stone,” Istanbul Technical University, Institute of Science and Technology, MSc. Thesis, 2009. [13] “C.I. Basic yellow 28 | C21H27N3O5S - PubChem.” https://pubchem.ncbi.nlm.nih.gov/compound/Basic_Yellow_28#section=2D-Structure (accessed Feb. 13, 2019).
  • P. F. Kerr, “Formation and occurrence of clay minerals,” Clays Clay Miner., vol. 1, pp. 19–32, 1952, Accessed: Nov. 01, 2018. [Online]. Available: http://www.clays.org/journal/archive/volume 1/1-1-19.pdf.
  • W. A. Deer, R. A. Howie, and J. Zussman, An introduction to the Rock-forming Minerals. 1992.
  • M. L. Jackson, “Soil chemical analysis. Verlag: Prentice Hall, Inc., Englewood Cliffs, NJ. 1958, 498 S. DM 39.40,” Zeitschrift für Pflanzenernährung, Düngung, Bodenkd., vol. 85, no. 3, pp. 251–252, Jan. 1959, doi: 10.1002/jpln.19590850311.
  • Ö. Şahin, M. Kaya, and C. Saka, “Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue,” Appl. Clay Sci., vol. 116–117, pp. 46–53, Nov. 2015, doi: 10.1016/j.clay.2015.08.015.
  • O. Sözüdogru, B. A. Fil, R. Boncukcuoglu, E. Aladag, and S. Kul, “Adsorptive removal of cationic (BY2) dye from aqueous solutions onto Turkish clay: Isotherm, kinetic, and thermodynamic analysis,” Part. Sci. Technol., vol. 34, no. 1, pp. 103–111, Jan. 2016, doi: 10.1080/02726351.2015.1052121.
  • Q. Zhou, Q. Gao, W. Luo, C. Yan, Z. Ji, and P. Duan, “One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 470, pp. 248–257, Apr. 2015, doi: 10.1016/j.colsurfa.2015.01.092.
  • B. A. Fil, K. Z. Karakas, R. Boncukcuoglu, and A. E. Yılmaz, “Removal of Cationic Dye(Basic Red 18) from Aqueous Solution Using Natural Turkish Clay,” Glob. NEST J., vol. 15, no. 4, pp. 529–541, 2013.
  • B. Makhoukhi, M. A. Didi, H. Moulessehoul, A. Azzouz, and D. Villemin, “Diphosphonium ion-exchanged montmorillonite for Telon dye removal from aqueous media,” Appl. Clay Sci., vol. 50, no. 3, pp. 354–361, Nov. 2010, doi: 10.1016/j.clay.2010.08.026.
  • S. T. Akar and R. Uysal, “Untreated clay with high adsorption capacity for effective removal of C.I. Acid Red 88 from aqueous solutions: Batch and dynamic flow mode studies,” Chem. Eng. J., vol. 162, no. 2, pp. 591–598, Aug. 2010, doi: 10.1016/j.cej.2010.06.001.
  • B. B. Johnson, “Effect of pH, temperature, and concentration on the adsorption of cadmium on goethite,” Environ. Sci. Technol., vol. 24, no. 1, pp. 112–118, Jan. 1990, doi: 10.1021/es00071a014.
  • S. Kayacan, “Removal of dye materials from aqueous solutions by adsorption on coals and cokes,” Ankara University, Institute of Science and Techology, MSc Thesis, 2007.
  • R. Gürellier, “Adsorption kinetic investigations of low concentrated uranium in aqua media by polymeric adsorban,” Ankara University, Institute of Science and Technology, MSc Thesis, 2004.
  • J. Wang, G. Liu, T. Li, and C. Zhou, “Physicochemical studies toward the removal of Zn(II) and Pb(II) ions through 1 adsorption on montmorillonite-supported zero-valent iron nanoparticles,” RSC Adv., no. 38, pp. 29609–30408, 2015.
  • K. A. Kareem, “Removal and Recovery of Methylene Blue Dye from Aqueous Solution using Avena Fatua Seed Husk,” Ibn Al-Haitham J. Pure Appl. Sci., vol. 29, no. 3, pp. 179–194, 2016, Accessed: Jul. 20, 2020. [Online]. Available: https://www.iasj.net/iasj?func=article&aId=122565.
  • G. Labuto, D. S. Cardona, K. B. Debs, A. R.Imamura, K. C. H. Bezerra, E. N. V. M. Carrilho, P. S. Haddad, “Low-cost agroindustrial biomasses and ferromagnetic bionanocomposites to cleanup textile effluents,” Desalin. Water Treat., vol. 112, pp. 80–89, Apr. 2018, doi: 10.5004/dwt.2018.21914.
  • M. Kılıç and A. S. K. Janabi, “Investigation of Dyes Adsorption with Activated Carbon Obtained from Cordia myxa,” Bilge Int. J. Sci. Technol. Res., vol. 1, no. 2, pp. 87–104, 2017.
  • Y. M. Lvov, D. G. Shchukin, E. Abdullayev, D. Shchukin, and Y. Lvov, “PMSE 193-Halloysite clay nanotubes as a reservoir for corrosion inhibitors and template for layer-by-layer encapsulation ,” Polym. Mater. Sci. Eng., vol. 99, pp. 331–332, 2008, Accessed: Jul. 23, 2020. [Online]. Available: https://www.researchgate.net/publication/41536507.
  • P. I. Au and Y. K. Leong, “Rheological and zeta potential behaviour of kaolin and bentonite composite slurries,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 436, pp. 530–541, Sep. 2013, doi: 10.1016/j.colsurfa.2013.06.039.
  • G. Nechifor, D. E. Pascu, M. Pascu (neagu, G. A. Traistaru, A. A. Bunaciu, and H. Y. Aboul-Enein, “Study of Adsorption Kinetics and Zeta Potential of Phosphate and Nitrate Ions on a Cellulosic Membrane,” Rev. Roum. Chim, vol. 58, no. 8, pp. 591–597, 2013, Accessed: Jul. 23, 2020. [Online]. Available: http://web.icf.ro/rrch/.
  • V. K. Gupta, S. Agarwal, H. Sadegh, G. A. M. Ali, A. K. Bharti, and A. S. Hamdy Makhlouf, “Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase,” J. Mol. Liq., vol. 237, pp. 466–472, Jul. 2017, doi: 10.1016/j.molliq.2017.04.113.
  • A. Olgun and N. Atar, “Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste,” J. Hazard. Mater., vol. 161, no. 1, pp. 148–156, Jan. 2009, doi: 10.1016/j.jhazmat.2008.03.064.
  • I. Twardowska, H. E. Allen, A. F. Kettrup, and W. J. Lacy, Solid Waste: Assessment, Monitoring and Remediation, 1st ed., vol. 4. Pergamon, 2004.
  • H. I. Albroomi, M. Abouelfotoh Elsayed, A. Baraka, and M. K. Abdelmaged, “Factors Affecting the Removal of a Basic and an Azo Dye from Artificial Solutions by Adsorption Using Activated Carbon,” J. Turkish Chem. Soc. Sect. A Chem., vol. 2, no. 1, pp. 17–33, 2015.
  • Y. S. Al-Degs, M. I. El-Barghouthi, A. H. El-Sheikh, and G. M. Walker, “Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon,” Dye. Pigment., 2008, doi: 10.1016/j.dyepig.2007.03.001.
  • G. Annadurai, R.-S. Juang, and D.-J. Lee, “Use of cellulose-based wastes for adsorption of dyes from aqueous solutions,” J. Hazard. Mater., vol. 92, no. 3, pp. 263–274, Jun. 2002, doi: 10.1016/S0304-3894(02)00017-1.

Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays

Year 2020, , 1081 - 1093, 01.10.2020
https://doi.org/10.16984/saufenbilder.526957

Abstract

This study was to evaluate the adsorption capability of clay minerals of halloysite, bentonite, kaolinite and natural clay (obtained from the Avanos) to remove Maxilon Golden Yellow GL EC 400% (MGY400) from aqueous solution. Different amounts of adsorbents (0.5, 1.0, 1.5 and 2.0 g.) were taken from the samples and according to the results obtained the most color removal clay material and adsorbent amount was found. Adsorption was applied on all clays at 25 oC temperature, 200 rpm mixing speed and different contact times (2, 5, 10, 20, 30, 40, 50, 60 min) in the batch reactor. Bentonite provided the highest dyestuff removal. Therefore, the second phase adsorption was continued with bentonite. The adsorption with bentonite were performed at different temperature (13 oC, 25 oC, 50 oC) and pH values (2, 4, 6, 8, 10, 12). When the pH was 12 and the temperature was 25 oC, it was determined that the removal rate of the dyestuff of bentonite reached up to 99.7%. According to the results, adsorption kinetics and isotherms were investigated, and evaluation was made for working conditions.

References

  • M. J. Sánchez-Martín, M. C. Dorado, C. del Hoyo, and M. S. Rodríguez-Cruz, “Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays,” J. Hazard. Mater., vol. 150, no. 1, pp. 115–123, Jan. 2008, doi: 10.1016/j.jhazmat.2007.04.093.
  • M. Doğan, M. H. Karaoğlu, and M. Alkan, “Adsorption kinetics of maxilon yellow 4GL and maxilon red GRL dyes on kaolinite.,” J. Hazard. Mater., vol. 165, no. 1–3, pp. 1142–51, Jun. 2009, doi: 10.1016/j.jhazmat.2008.10.101.
  • G. Jing, Z. Sun, P. Ye, S. Wei, and Y. Liang, “Clays for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: a review,” Water Pract. Technol., vol. 12, no. 2, pp. 432–443, Jun. 2017, doi: 10.2166/wpt.2017.046.
  • M. Tanyol, “Removal of Remazol Brilliant Blue R from aueous solutions using raw and modified bentonite,” Kafkas Univ. J. Sci., vol. 9, no. 1, pp. 46–52, 2016, Accessed: Jan. 03, 2019. [Online]. Available: http://dergipark.gov.tr/kujs/issue/30865/338477.
  • A. Ghribi and M. Bagane, “Kinetic modeling for the adsorption of methylene blue from aqueous solutions using Tunisian clay,” in IREC2015 The Sixth International Renewable Energy Congress, Mar. 2015, pp. 1–4, doi: 10.1109/IREC.2015.7110940.
  • P. Liu and L. Zhang, “Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents,” Sep. Purif. Technol., vol. 58, no. 1, pp. 32–39, Dec. 2007, doi: 10.1016/J.SEPPUR.2007.07.007.
  • A. Gürses, Ç. Doǧar, M. Yalçin, M. Açikyildiz, R. Bayrak, and S. Karaca, “The adsorption kinetics of the cationic dye, methylene blue, onto clay,” J. Hazard. Mater., vol. 131, no. 1–3, pp. 217–228, Apr. 2006, doi: 10.1016/j.jhazmat.2005.09.036.
  • S. S. Tahir and N. Rauf, “Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay,” Chemosphere, vol. 63, no. 11, pp. 1842–1848, Jun. 2006, doi: 10.1016/j.chemosphere.2005.10.033.
  • E. Errais, J. Duplay, F. Darragi, I. M'Rabet, A. Aubert, F. Huber, G. Morvan, “Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters,” Desalination, vol. 275, no. 1–3, pp. 74–81, Jul. 2011, doi: 10.1016/j.desal.2011.02.031.
  • N. Abidi, E.Errais, J. Duplay, A. Berez, A. Jrad, G. Schäfer, M. Ghazi, K. Semhi, M. Trabelsi-Ayadi, “Treatment of dye-containing effluent by natural clay,” J. Clean. Prod., vol. 86, pp. 432–440, Jan. 2015, doi: 10.1016/J.JCLEPRO.2014.08.043.
  • Z. Hicham, Z. Bencheqroun, I. El Mrabet, M. Kachabi, M. Nawdali, and I. Neves, “Removal of Basic Dyes from Aqueous Solutions by Adsorption onto Moroccan Clay (Fez City),” Mediterr. J. Chem., vol. 8, no. 3, pp. 158–167, May 2019, doi: 10.13171/mjc8319050803hz.
  • E. Kayman, “Adsorption of lead ions from aqueous solutions by activated carbon produced from chestnut shell and apricot stone,” Istanbul Technical University, Institute of Science and Technology, MSc. Thesis, 2009. [13] “C.I. Basic yellow 28 | C21H27N3O5S - PubChem.” https://pubchem.ncbi.nlm.nih.gov/compound/Basic_Yellow_28#section=2D-Structure (accessed Feb. 13, 2019).
  • P. F. Kerr, “Formation and occurrence of clay minerals,” Clays Clay Miner., vol. 1, pp. 19–32, 1952, Accessed: Nov. 01, 2018. [Online]. Available: http://www.clays.org/journal/archive/volume 1/1-1-19.pdf.
  • W. A. Deer, R. A. Howie, and J. Zussman, An introduction to the Rock-forming Minerals. 1992.
  • M. L. Jackson, “Soil chemical analysis. Verlag: Prentice Hall, Inc., Englewood Cliffs, NJ. 1958, 498 S. DM 39.40,” Zeitschrift für Pflanzenernährung, Düngung, Bodenkd., vol. 85, no. 3, pp. 251–252, Jan. 1959, doi: 10.1002/jpln.19590850311.
  • Ö. Şahin, M. Kaya, and C. Saka, “Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue,” Appl. Clay Sci., vol. 116–117, pp. 46–53, Nov. 2015, doi: 10.1016/j.clay.2015.08.015.
  • O. Sözüdogru, B. A. Fil, R. Boncukcuoglu, E. Aladag, and S. Kul, “Adsorptive removal of cationic (BY2) dye from aqueous solutions onto Turkish clay: Isotherm, kinetic, and thermodynamic analysis,” Part. Sci. Technol., vol. 34, no. 1, pp. 103–111, Jan. 2016, doi: 10.1080/02726351.2015.1052121.
  • Q. Zhou, Q. Gao, W. Luo, C. Yan, Z. Ji, and P. Duan, “One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 470, pp. 248–257, Apr. 2015, doi: 10.1016/j.colsurfa.2015.01.092.
  • B. A. Fil, K. Z. Karakas, R. Boncukcuoglu, and A. E. Yılmaz, “Removal of Cationic Dye(Basic Red 18) from Aqueous Solution Using Natural Turkish Clay,” Glob. NEST J., vol. 15, no. 4, pp. 529–541, 2013.
  • B. Makhoukhi, M. A. Didi, H. Moulessehoul, A. Azzouz, and D. Villemin, “Diphosphonium ion-exchanged montmorillonite for Telon dye removal from aqueous media,” Appl. Clay Sci., vol. 50, no. 3, pp. 354–361, Nov. 2010, doi: 10.1016/j.clay.2010.08.026.
  • S. T. Akar and R. Uysal, “Untreated clay with high adsorption capacity for effective removal of C.I. Acid Red 88 from aqueous solutions: Batch and dynamic flow mode studies,” Chem. Eng. J., vol. 162, no. 2, pp. 591–598, Aug. 2010, doi: 10.1016/j.cej.2010.06.001.
  • B. B. Johnson, “Effect of pH, temperature, and concentration on the adsorption of cadmium on goethite,” Environ. Sci. Technol., vol. 24, no. 1, pp. 112–118, Jan. 1990, doi: 10.1021/es00071a014.
  • S. Kayacan, “Removal of dye materials from aqueous solutions by adsorption on coals and cokes,” Ankara University, Institute of Science and Techology, MSc Thesis, 2007.
  • R. Gürellier, “Adsorption kinetic investigations of low concentrated uranium in aqua media by polymeric adsorban,” Ankara University, Institute of Science and Technology, MSc Thesis, 2004.
  • J. Wang, G. Liu, T. Li, and C. Zhou, “Physicochemical studies toward the removal of Zn(II) and Pb(II) ions through 1 adsorption on montmorillonite-supported zero-valent iron nanoparticles,” RSC Adv., no. 38, pp. 29609–30408, 2015.
  • K. A. Kareem, “Removal and Recovery of Methylene Blue Dye from Aqueous Solution using Avena Fatua Seed Husk,” Ibn Al-Haitham J. Pure Appl. Sci., vol. 29, no. 3, pp. 179–194, 2016, Accessed: Jul. 20, 2020. [Online]. Available: https://www.iasj.net/iasj?func=article&aId=122565.
  • G. Labuto, D. S. Cardona, K. B. Debs, A. R.Imamura, K. C. H. Bezerra, E. N. V. M. Carrilho, P. S. Haddad, “Low-cost agroindustrial biomasses and ferromagnetic bionanocomposites to cleanup textile effluents,” Desalin. Water Treat., vol. 112, pp. 80–89, Apr. 2018, doi: 10.5004/dwt.2018.21914.
  • M. Kılıç and A. S. K. Janabi, “Investigation of Dyes Adsorption with Activated Carbon Obtained from Cordia myxa,” Bilge Int. J. Sci. Technol. Res., vol. 1, no. 2, pp. 87–104, 2017.
  • Y. M. Lvov, D. G. Shchukin, E. Abdullayev, D. Shchukin, and Y. Lvov, “PMSE 193-Halloysite clay nanotubes as a reservoir for corrosion inhibitors and template for layer-by-layer encapsulation ,” Polym. Mater. Sci. Eng., vol. 99, pp. 331–332, 2008, Accessed: Jul. 23, 2020. [Online]. Available: https://www.researchgate.net/publication/41536507.
  • P. I. Au and Y. K. Leong, “Rheological and zeta potential behaviour of kaolin and bentonite composite slurries,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 436, pp. 530–541, Sep. 2013, doi: 10.1016/j.colsurfa.2013.06.039.
  • G. Nechifor, D. E. Pascu, M. Pascu (neagu, G. A. Traistaru, A. A. Bunaciu, and H. Y. Aboul-Enein, “Study of Adsorption Kinetics and Zeta Potential of Phosphate and Nitrate Ions on a Cellulosic Membrane,” Rev. Roum. Chim, vol. 58, no. 8, pp. 591–597, 2013, Accessed: Jul. 23, 2020. [Online]. Available: http://web.icf.ro/rrch/.
  • V. K. Gupta, S. Agarwal, H. Sadegh, G. A. M. Ali, A. K. Bharti, and A. S. Hamdy Makhlouf, “Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase,” J. Mol. Liq., vol. 237, pp. 466–472, Jul. 2017, doi: 10.1016/j.molliq.2017.04.113.
  • A. Olgun and N. Atar, “Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste,” J. Hazard. Mater., vol. 161, no. 1, pp. 148–156, Jan. 2009, doi: 10.1016/j.jhazmat.2008.03.064.
  • I. Twardowska, H. E. Allen, A. F. Kettrup, and W. J. Lacy, Solid Waste: Assessment, Monitoring and Remediation, 1st ed., vol. 4. Pergamon, 2004.
  • H. I. Albroomi, M. Abouelfotoh Elsayed, A. Baraka, and M. K. Abdelmaged, “Factors Affecting the Removal of a Basic and an Azo Dye from Artificial Solutions by Adsorption Using Activated Carbon,” J. Turkish Chem. Soc. Sect. A Chem., vol. 2, no. 1, pp. 17–33, 2015.
  • Y. S. Al-Degs, M. I. El-Barghouthi, A. H. El-Sheikh, and G. M. Walker, “Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon,” Dye. Pigment., 2008, doi: 10.1016/j.dyepig.2007.03.001.
  • G. Annadurai, R.-S. Juang, and D.-J. Lee, “Use of cellulose-based wastes for adsorption of dyes from aqueous solutions,” J. Hazard. Mater., vol. 92, no. 3, pp. 263–274, Jun. 2002, doi: 10.1016/S0304-3894(02)00017-1.
There are 37 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Sevgi Güneş Durak 0000-0003-4273-7417

Publication Date October 1, 2020
Submission Date February 14, 2019
Acceptance Date August 11, 2020
Published in Issue Year 2020

Cite

APA Güneş Durak, S. (2020). Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays. Sakarya University Journal of Science, 24(5), 1081-1093. https://doi.org/10.16984/saufenbilder.526957
AMA Güneş Durak S. Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays. SAUJS. October 2020;24(5):1081-1093. doi:10.16984/saufenbilder.526957
Chicago Güneş Durak, Sevgi. “Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays”. Sakarya University Journal of Science 24, no. 5 (October 2020): 1081-93. https://doi.org/10.16984/saufenbilder.526957.
EndNote Güneş Durak S (October 1, 2020) Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays. Sakarya University Journal of Science 24 5 1081–1093.
IEEE S. Güneş Durak, “Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays”, SAUJS, vol. 24, no. 5, pp. 1081–1093, 2020, doi: 10.16984/saufenbilder.526957.
ISNAD Güneş Durak, Sevgi. “Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays”. Sakarya University Journal of Science 24/5 (October 2020), 1081-1093. https://doi.org/10.16984/saufenbilder.526957.
JAMA Güneş Durak S. Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays. SAUJS. 2020;24:1081–1093.
MLA Güneş Durak, Sevgi. “Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays”. Sakarya University Journal of Science, vol. 24, no. 5, 2020, pp. 1081-93, doi:10.16984/saufenbilder.526957.
Vancouver Güneş Durak S. Removal of Maxilon Golden Yellow GL EC 400% from the Wastewater by Adsorption Method Using Different Clays. SAUJS. 2020;24(5):1081-93.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.