Research Article
BibTex RIS Cite
Year 2019, , 993 - 1004, 01.10.2019
https://doi.org/10.16984/saufenbilder.552659

Abstract

References

  • [1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39K in magnesium diboride,” Nature, vol. 410, pp. 63-64, 2001.
  • [2] Y. Iwasa, D. C. Larbalestier, M. Okada, R. Penco, M. D. Sumption, and X. X. Xi, “A round table discussion on MgB2 toward a wide market or a niche production? A summary,” IEEE Transaction on Applied Superconductivity, vol. 16, pp. 1457-1464, 2006.
  • [3] S. B. Guner, Y. Zalaoglu, T. Turgay, O. Ozyurt, A. T. Ulgen, M. Dogruer, G. Yildirim, “A detailed research for determination of Bi/Ga partial substitution effect in Bi-2212 superconducting matrix on crucial characteristic features,” Journal of Alloys and Compounds, vol. 772, pp. 388-398, 2019.
  • [4] Y. Zalaoglu, B. Akkurt, M. Oz, G. Yildirim, “Transgranular region preference of crack propagation along Bi-2212 crystal structure due to Au nanoparticle diffusion and modeling of new systems,” Journal of Materials Science: Materials in Electronics, vol. 28 pp. 12839-12850, 2017.
  • [5] B. Akkurt, G. Yildirim, “Change of mechanical performance and characterization with replacement of Ca by Gd nanoparticles in Bi-2212 system and suppression of durable tetragonal phase by Gd,” Journal of Materials Science: Materials in Electronics, vol. 27 pp. 13034-13043, 2016.
  • [6] M. Razeti, S. Angius, L. Bertora, D. Damiani, R. Marabotto, M. Modica, and M. Tassisto, “Construction and installation of cryogen free MgB2 magnets for open MRI systems,” IEEE Transactions on Applied Superconductivity. vol. 18, pp. 882-886, 2008.
  • [7] H. S. Kim, C. Kovacs, M. Rindfleisch, J. Yue, D. Doll, M. Tomsic, M. D. Sumption and E. W. Collings, “Demonstration of a Conduction Cooled React and Wind MgB2 Coil Segment for MRI Applications,” IEEE Transactions on Applied Superconductivity, vol. 26 pp. 4400305-4400309, 2016.
  • [8] S. Sanz, T. Arlaban, R. Manzanas, M. Tropeano, R. Funke, P. Kováč, Y. Yang, H. Neumann and B. Mondesert, “Superconducting light generator for large offshore wind turbines,” Journal of physics: Conference Series vol. 507, 032040, 2014.
  • [9] I. Marino, A. Pujana, G. Sarmiento, S. J. M. Merino, M. Tropeano, J. Sun and T. Canosa, “Lightweight MgB2 superconducting 10 MW wind generator,” Superconductor Science and Technology, vol. 29, pp. 024005-024016, 2016.
  • [10] C. Haberstroh and G. A. Zick, “superconductive MgB2 level sensor for liquid hydrogen,” Advances in Cryogenic Engineering, vol. 823, pp. 679-684, 2006. [11] S. I. Schlachter, W. Goldacker, A. Frank, B. Ringsdorf, H. Orschulko, “Properties of MgB2 superconductors with regard to space applications,” Cryogenics, vol. 46(2-3), pp. 201-2017, 2006.
  • [12] G. Grasso, A. Malagoli, C. Ferdeghini, S. Roncallo, V. Braccini, M. R. Cimberle and A. S. Siri, “Large transport critical currents in un-sintered MgB2 superconducting tapes,” Applied Physics Letter, vol. 79, pp. 230-232, 2001.
  • [13] H. L. Suo, C. Beneduce, M. Dhalle, N. Musolino, J. Y. Genoud and R. Flukiger “Large transport critical currents in dense Fe- and Ni-clad MgB2 superconducting tapes,” Applied Physics Letter, vol. 79, pp. 3116-3118, 2001.
  • [14] S. Soltanian, X. L. Wang, I. Kusevic, E. Babic, A. H. Li, M. J. Qin, J. Horvat, H. K. Liu, E. W. Collings, E. Lee, M. D. Sumption and S. X. Dou, “High transport critical current density above 30 K in pure Fe-clad MgB2 tape,” Physica C, vol. 361, pp. 84-90, 2001.
  • [15] S. Jin, H. Mavoori, C. Bower and R. B. van Dover, “High critical currents in iron-clad superconducting MgB2 wires,” Nature, vol. 411, pp. 563-565, 2001.
  • [16] G. Giunchi, S. Raineri, R. Wesche and P. Bruzzone, “The voltage-current relations for MgB2 obtained by reactive liquid infiltration,” Physica C: Superconductor, vol. 401, pp. 310–315, 2004.
  • [17] P. Badica, D. Batalu, M. Burdusel, M. A. Grigoroscuta, G. V. Aldica, M. Enculescu, R. A. Gabor, Z. Wang, R. Huang and P. Li, “Compressive properties of pristine and SiC-Te added MgB2 powders, green compacts and spark-plasma-sintered bulks,” Ceramics International, vol. 44, pp. 10181–10191, 2018.
  • [18] J. Hur, K. Togano, A. Matsumoto, H. Kumakura, H. Wada and K. Kimura, “Fabrication of high-performance MgB2 wires by an internal Mg diffusion process,” Superconductor Science and Technology, vol. 21, pp. 032001, 2008.
  • [19] R. Flukiger, M.S.A. Hossain and C. Senatore, “Strong enhancement of Jc and Birr in binary in situ MgB2 wires after cold high pressure densification,” Superconductor Science and Technology. vol. 22, pp. 085002, 2009.
  • [20] G. Li, M. Sumption, M. Susner, Y. Yang, K. Reddy, M. Rind eisch, M. Tomsic, C. Thong and E. Collings, “The critical current density of advanced internal-Mg-diffusion-processed MgB2 wires,” Superconductor Science and Technology, vol. 25, pp. 115023, 2012.
  • [21] W. K. Yeoh, J. H. Kim, J. Horvat, X. Xu, M. J. Qin, S. Dou, C. Jiang, T. Nakane, H. Kumakura and P. Munreo, “Control of nano carbon substitution for enhancing the critical current density in MgB2,” Superconductor Science and Technology, 19, vol. 596-599, pp. 2006.
  • [22] K. Togano, J. Hur, A. Matsumoto and H. Kumakura, “Microstructures and critical currents of single- and multi-filamentary MgB2 superconducting wires fabricated by an internal Mg diffusion process,” Superconductor Science and Technology, vol. 23, pp. 085002, 2010.
  • [23] O. V. Shcherbakova, A. V. Pan, S. Soltanian, S. X. Dou and D. Wexler, “Influence of the cooling rate on the main factors affecting current-carrying ability in pure and SiC-doped MgB2 superconductors,” Superconductor Science and Technology, vol. 20, pp. 5-, 2007.
  • [24] S. K. Chen, K. S. Tan, B. A. Glowacki, W. K. Yeoh, S. Soltanian, J. Horvat and S. X. Dou, “Effect of heating rates on superconducting properties of pure MgB2, carbon nanotube- and nano-SiC-doped in situ MgB2/Fe wires,” Applied Physics Letters, vol. 87, pp. 182504-182509, 2005.
  • [25] P. Kováč, I. Hušek, A. Rosova, M. Kulich, T. Melišek, L. Kopera and B. Brunner “Properties of MgB2 wires made by internal magnesium diffusion into different boron powders,” Superconductor Science and Technology, vol. 28, pp. 095014, 2015.
  • [26] G. Z. Li, M. D. Sumption, M. A. Susner, Y. Yang, K. M. Reddy, M. A. Rindfleisch, M. J. Tomsic, C. J. Thong and E. W. Collings, “The critical current density of advanced internal-Mg-diffusion-processed MgB2 wires” Superconductor Science and Technology, vol. 25, pp. 115023-115031, 2012.
  • [27] P. Kováč, I. Hušek, W. Pachla, T. Melišek, M. Kulich, A. Rosová and L. Kopera, “Effect of cold isostatic pressing on the transport current of filamentary MgB2 wire made by the IMD process,” Superconductor Science and Technology, vol. 29, pp. 075004, 2016.
  • [28] M. A. Senol, F. Karaboga, “Microstructure and transport properties of compaction-modified in situ Fe/MgB2 wires,” Journal of Superconductivity and Novel Magnetism, vol. 29, pp. 2479, 2016.
  • [29] A. Kario, A. Morawski, W. Haßler, M. Herrmann, C. Rodig, M. Schubert, K. Nenkov, B. Holzapfel, L. Schultz, B. A. Glowacki, S. C. Hopkins, “Novel ex situ MgB2 barrier for in situ monofilamentary MgB2 conductors with Fe and Cu sheath material,” Superconductor Science and Technology, vol. 23, pp. 025018, 2010.
  • [30] J. M. Hur, K. Togano, A. Matsumoto, H. Kumakura, H. Wada and K. Kimura, “Fabrication of high-performance MgB2 wires by an internal Mg diffusion process,” Superconductor Science and Technology, vol. 21, pp. 032001, 2008.
  • [31] Y. E. Shujun and H. Kumakura, “The development of MgB2 superconducting wires fabricated with an internal Mg diffusion (IMD) process,” Superconductor Science and Technology, vol. 29, pp. 113004, 2016.
  • [32] T. Holubek, M. Dhalle and P. Kovac, “Current transfer in MgB2 wires with different sheath materials,” Superconductor Science and Technology, vol. 20, pp. 123, 2007. [33] J. H. Kim and S. Choi, “Carbon doping induced imperfections on MgB2 superconducting wire,” Journal of Analytical Science and Technology, vol. 6, pp. 11, 2015. [34] G. Bovone, D. Matera, C. Bernini, A. S. Siri, A. Malagoli and M. Vignolo, “The influence of wire heat treatment on PIT MgB2 conductors manufactured using laboratory-made boron,” IEEE Transaction on Applied Superconductivity, vol. 25, pp. 6200504, 2015.
  • [35] N. N. Kolesnikov and M. P. Kulakov, “Synthesis of MgB2 from elements,” Physica C, vol. 363, pp. 166-169, Nov 15 2001.
  • [36] R. Flukiger, M. S. A. Hossain, M. Kulich and C. Senatore, “Technical aspects of cold high pressure densification (CHPD) on long lengths of in situ MgB2 wires with enhanced Jc values,” Advances in Cryogenic Engineering, AIP Conference Proceedings, vol. 1435, pp. 353, 2012.
  • [37] M. S. A. Hossain, A. Motaman, S. Barua, D. Patel, M. Mustapic, J. H. Kim, M. Maeda, M. Rindfleisch, M. Tomsic, O. Cicek, T. Melisek, L. Kopera, A. Kario, B. Ringsdorf, B. Runtsch, A. Jung, S. X. Dou, W. Goldacker and P. Kovac, “The roles of CHPD: superior critical current density and n-value obtained in binary in situ MgB2 cables,” Superconductor Science and Technology, vol. 27, pp. 095016, 2014.
  • [38] M. Muralidhar, K. Nozaki, H. Kobayashi, X. L. Zeng, A. Koblischka-Veneva, M. R. Koblischka, K. Inoue and M. Murakami, “Optimization of sintering conditions in bulk MgB2 material for improvement of critical current density,” Journal of Alloys and Compounds, vol. 649, pp. 833-842, 2015.
  • [39] A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, I. Iwayama, S. Horii and K. Kishio, “Effects of sintering conditions on critical current properties and microstructures of MgB2 bulks,” Physica C, vol. 426–431, pp. 1220–1224, 2005.
  • [40] Y. Zhang, C. Lu, S. H. Zhou, K. C. Chung, Y. K. Kim, and S. X. Dou, “Influence of Heat Treatment on Superconductivity of MgB2 Bulk Sintered in Flowing Welding Grade Ar Atmosphere,” IEEE Transactions on Magnetics, vol. 45, pp. 2626-2629, 2009.
  • [41] J. C. Grivel, R. Pinholt, N.H. Andersen, P. Kov´aˇc, I. Huˇsek and J. Homeyer, “In situ investigations of phase transformations in Fe-sheathed MgB2 wires,” Superconductor Science and Technology, vol. 19, pp. 96, 2006.
  • [11] S. I. Schlachter, W. Goldacker, A. Frank, B. Ringsdorf, H. Orschulko, “Properties of MgB2 superconductors with regard to space applications,” Cryogenics, vol. 46(2-3), pp. 201-2017, 2006.
  • [33] J. H. Kim and S. Choi, “Carbon doping induced imperfections on MgB2 superconducting wire,” Journal of Analytical Science and Technology, vol. 6, pp. 11, 2015.
  • [34] G. Bovone, D. Matera, C. Bernini, A. S. Siri, A. Malagoli and M. Vignolo, “The influence of wire heat treatment on PIT MgB2 conductors manufactured using laboratory-made boron,” IEEE Transaction on Applied Superconductivity, vol. 25, pp. 6200504, 2015.

Effect of Rapidly Annealing Process on MgB2 Superconducting Wires

Year 2019, , 993 - 1004, 01.10.2019
https://doi.org/10.16984/saufenbilder.552659

Abstract

The present study has reported the effect of rapidly annealing and cooling process on the transport and morphological properties of Fe/MgB2 wires. Transport properties like critical transition temperature, transition width and engineering critical current density of the obtained wires at different annealing and durations were determined for superconducting wires. The results show that the annealing temperature is more dominant to accelerate the reaction rate of Mg and B in the wires in comparison with annealing duration. Among the studied wires, a highest Jc (T = 36K) value >150 A/cm2 was achieved for the wires at 900oC and 1000oC for small durations (15 minutes). In the study, it was investigated whether fast annealing and cooling is a possible candidate to fabricate fast the requested superconducting MgB2 long length wires for coils by React&Wind method in continuous system or not.

References

  • [1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39K in magnesium diboride,” Nature, vol. 410, pp. 63-64, 2001.
  • [2] Y. Iwasa, D. C. Larbalestier, M. Okada, R. Penco, M. D. Sumption, and X. X. Xi, “A round table discussion on MgB2 toward a wide market or a niche production? A summary,” IEEE Transaction on Applied Superconductivity, vol. 16, pp. 1457-1464, 2006.
  • [3] S. B. Guner, Y. Zalaoglu, T. Turgay, O. Ozyurt, A. T. Ulgen, M. Dogruer, G. Yildirim, “A detailed research for determination of Bi/Ga partial substitution effect in Bi-2212 superconducting matrix on crucial characteristic features,” Journal of Alloys and Compounds, vol. 772, pp. 388-398, 2019.
  • [4] Y. Zalaoglu, B. Akkurt, M. Oz, G. Yildirim, “Transgranular region preference of crack propagation along Bi-2212 crystal structure due to Au nanoparticle diffusion and modeling of new systems,” Journal of Materials Science: Materials in Electronics, vol. 28 pp. 12839-12850, 2017.
  • [5] B. Akkurt, G. Yildirim, “Change of mechanical performance and characterization with replacement of Ca by Gd nanoparticles in Bi-2212 system and suppression of durable tetragonal phase by Gd,” Journal of Materials Science: Materials in Electronics, vol. 27 pp. 13034-13043, 2016.
  • [6] M. Razeti, S. Angius, L. Bertora, D. Damiani, R. Marabotto, M. Modica, and M. Tassisto, “Construction and installation of cryogen free MgB2 magnets for open MRI systems,” IEEE Transactions on Applied Superconductivity. vol. 18, pp. 882-886, 2008.
  • [7] H. S. Kim, C. Kovacs, M. Rindfleisch, J. Yue, D. Doll, M. Tomsic, M. D. Sumption and E. W. Collings, “Demonstration of a Conduction Cooled React and Wind MgB2 Coil Segment for MRI Applications,” IEEE Transactions on Applied Superconductivity, vol. 26 pp. 4400305-4400309, 2016.
  • [8] S. Sanz, T. Arlaban, R. Manzanas, M. Tropeano, R. Funke, P. Kováč, Y. Yang, H. Neumann and B. Mondesert, “Superconducting light generator for large offshore wind turbines,” Journal of physics: Conference Series vol. 507, 032040, 2014.
  • [9] I. Marino, A. Pujana, G. Sarmiento, S. J. M. Merino, M. Tropeano, J. Sun and T. Canosa, “Lightweight MgB2 superconducting 10 MW wind generator,” Superconductor Science and Technology, vol. 29, pp. 024005-024016, 2016.
  • [10] C. Haberstroh and G. A. Zick, “superconductive MgB2 level sensor for liquid hydrogen,” Advances in Cryogenic Engineering, vol. 823, pp. 679-684, 2006. [11] S. I. Schlachter, W. Goldacker, A. Frank, B. Ringsdorf, H. Orschulko, “Properties of MgB2 superconductors with regard to space applications,” Cryogenics, vol. 46(2-3), pp. 201-2017, 2006.
  • [12] G. Grasso, A. Malagoli, C. Ferdeghini, S. Roncallo, V. Braccini, M. R. Cimberle and A. S. Siri, “Large transport critical currents in un-sintered MgB2 superconducting tapes,” Applied Physics Letter, vol. 79, pp. 230-232, 2001.
  • [13] H. L. Suo, C. Beneduce, M. Dhalle, N. Musolino, J. Y. Genoud and R. Flukiger “Large transport critical currents in dense Fe- and Ni-clad MgB2 superconducting tapes,” Applied Physics Letter, vol. 79, pp. 3116-3118, 2001.
  • [14] S. Soltanian, X. L. Wang, I. Kusevic, E. Babic, A. H. Li, M. J. Qin, J. Horvat, H. K. Liu, E. W. Collings, E. Lee, M. D. Sumption and S. X. Dou, “High transport critical current density above 30 K in pure Fe-clad MgB2 tape,” Physica C, vol. 361, pp. 84-90, 2001.
  • [15] S. Jin, H. Mavoori, C. Bower and R. B. van Dover, “High critical currents in iron-clad superconducting MgB2 wires,” Nature, vol. 411, pp. 563-565, 2001.
  • [16] G. Giunchi, S. Raineri, R. Wesche and P. Bruzzone, “The voltage-current relations for MgB2 obtained by reactive liquid infiltration,” Physica C: Superconductor, vol. 401, pp. 310–315, 2004.
  • [17] P. Badica, D. Batalu, M. Burdusel, M. A. Grigoroscuta, G. V. Aldica, M. Enculescu, R. A. Gabor, Z. Wang, R. Huang and P. Li, “Compressive properties of pristine and SiC-Te added MgB2 powders, green compacts and spark-plasma-sintered bulks,” Ceramics International, vol. 44, pp. 10181–10191, 2018.
  • [18] J. Hur, K. Togano, A. Matsumoto, H. Kumakura, H. Wada and K. Kimura, “Fabrication of high-performance MgB2 wires by an internal Mg diffusion process,” Superconductor Science and Technology, vol. 21, pp. 032001, 2008.
  • [19] R. Flukiger, M.S.A. Hossain and C. Senatore, “Strong enhancement of Jc and Birr in binary in situ MgB2 wires after cold high pressure densification,” Superconductor Science and Technology. vol. 22, pp. 085002, 2009.
  • [20] G. Li, M. Sumption, M. Susner, Y. Yang, K. Reddy, M. Rind eisch, M. Tomsic, C. Thong and E. Collings, “The critical current density of advanced internal-Mg-diffusion-processed MgB2 wires,” Superconductor Science and Technology, vol. 25, pp. 115023, 2012.
  • [21] W. K. Yeoh, J. H. Kim, J. Horvat, X. Xu, M. J. Qin, S. Dou, C. Jiang, T. Nakane, H. Kumakura and P. Munreo, “Control of nano carbon substitution for enhancing the critical current density in MgB2,” Superconductor Science and Technology, 19, vol. 596-599, pp. 2006.
  • [22] K. Togano, J. Hur, A. Matsumoto and H. Kumakura, “Microstructures and critical currents of single- and multi-filamentary MgB2 superconducting wires fabricated by an internal Mg diffusion process,” Superconductor Science and Technology, vol. 23, pp. 085002, 2010.
  • [23] O. V. Shcherbakova, A. V. Pan, S. Soltanian, S. X. Dou and D. Wexler, “Influence of the cooling rate on the main factors affecting current-carrying ability in pure and SiC-doped MgB2 superconductors,” Superconductor Science and Technology, vol. 20, pp. 5-, 2007.
  • [24] S. K. Chen, K. S. Tan, B. A. Glowacki, W. K. Yeoh, S. Soltanian, J. Horvat and S. X. Dou, “Effect of heating rates on superconducting properties of pure MgB2, carbon nanotube- and nano-SiC-doped in situ MgB2/Fe wires,” Applied Physics Letters, vol. 87, pp. 182504-182509, 2005.
  • [25] P. Kováč, I. Hušek, A. Rosova, M. Kulich, T. Melišek, L. Kopera and B. Brunner “Properties of MgB2 wires made by internal magnesium diffusion into different boron powders,” Superconductor Science and Technology, vol. 28, pp. 095014, 2015.
  • [26] G. Z. Li, M. D. Sumption, M. A. Susner, Y. Yang, K. M. Reddy, M. A. Rindfleisch, M. J. Tomsic, C. J. Thong and E. W. Collings, “The critical current density of advanced internal-Mg-diffusion-processed MgB2 wires” Superconductor Science and Technology, vol. 25, pp. 115023-115031, 2012.
  • [27] P. Kováč, I. Hušek, W. Pachla, T. Melišek, M. Kulich, A. Rosová and L. Kopera, “Effect of cold isostatic pressing on the transport current of filamentary MgB2 wire made by the IMD process,” Superconductor Science and Technology, vol. 29, pp. 075004, 2016.
  • [28] M. A. Senol, F. Karaboga, “Microstructure and transport properties of compaction-modified in situ Fe/MgB2 wires,” Journal of Superconductivity and Novel Magnetism, vol. 29, pp. 2479, 2016.
  • [29] A. Kario, A. Morawski, W. Haßler, M. Herrmann, C. Rodig, M. Schubert, K. Nenkov, B. Holzapfel, L. Schultz, B. A. Glowacki, S. C. Hopkins, “Novel ex situ MgB2 barrier for in situ monofilamentary MgB2 conductors with Fe and Cu sheath material,” Superconductor Science and Technology, vol. 23, pp. 025018, 2010.
  • [30] J. M. Hur, K. Togano, A. Matsumoto, H. Kumakura, H. Wada and K. Kimura, “Fabrication of high-performance MgB2 wires by an internal Mg diffusion process,” Superconductor Science and Technology, vol. 21, pp. 032001, 2008.
  • [31] Y. E. Shujun and H. Kumakura, “The development of MgB2 superconducting wires fabricated with an internal Mg diffusion (IMD) process,” Superconductor Science and Technology, vol. 29, pp. 113004, 2016.
  • [32] T. Holubek, M. Dhalle and P. Kovac, “Current transfer in MgB2 wires with different sheath materials,” Superconductor Science and Technology, vol. 20, pp. 123, 2007. [33] J. H. Kim and S. Choi, “Carbon doping induced imperfections on MgB2 superconducting wire,” Journal of Analytical Science and Technology, vol. 6, pp. 11, 2015. [34] G. Bovone, D. Matera, C. Bernini, A. S. Siri, A. Malagoli and M. Vignolo, “The influence of wire heat treatment on PIT MgB2 conductors manufactured using laboratory-made boron,” IEEE Transaction on Applied Superconductivity, vol. 25, pp. 6200504, 2015.
  • [35] N. N. Kolesnikov and M. P. Kulakov, “Synthesis of MgB2 from elements,” Physica C, vol. 363, pp. 166-169, Nov 15 2001.
  • [36] R. Flukiger, M. S. A. Hossain, M. Kulich and C. Senatore, “Technical aspects of cold high pressure densification (CHPD) on long lengths of in situ MgB2 wires with enhanced Jc values,” Advances in Cryogenic Engineering, AIP Conference Proceedings, vol. 1435, pp. 353, 2012.
  • [37] M. S. A. Hossain, A. Motaman, S. Barua, D. Patel, M. Mustapic, J. H. Kim, M. Maeda, M. Rindfleisch, M. Tomsic, O. Cicek, T. Melisek, L. Kopera, A. Kario, B. Ringsdorf, B. Runtsch, A. Jung, S. X. Dou, W. Goldacker and P. Kovac, “The roles of CHPD: superior critical current density and n-value obtained in binary in situ MgB2 cables,” Superconductor Science and Technology, vol. 27, pp. 095016, 2014.
  • [38] M. Muralidhar, K. Nozaki, H. Kobayashi, X. L. Zeng, A. Koblischka-Veneva, M. R. Koblischka, K. Inoue and M. Murakami, “Optimization of sintering conditions in bulk MgB2 material for improvement of critical current density,” Journal of Alloys and Compounds, vol. 649, pp. 833-842, 2015.
  • [39] A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, I. Iwayama, S. Horii and K. Kishio, “Effects of sintering conditions on critical current properties and microstructures of MgB2 bulks,” Physica C, vol. 426–431, pp. 1220–1224, 2005.
  • [40] Y. Zhang, C. Lu, S. H. Zhou, K. C. Chung, Y. K. Kim, and S. X. Dou, “Influence of Heat Treatment on Superconductivity of MgB2 Bulk Sintered in Flowing Welding Grade Ar Atmosphere,” IEEE Transactions on Magnetics, vol. 45, pp. 2626-2629, 2009.
  • [41] J. C. Grivel, R. Pinholt, N.H. Andersen, P. Kov´aˇc, I. Huˇsek and J. Homeyer, “In situ investigations of phase transformations in Fe-sheathed MgB2 wires,” Superconductor Science and Technology, vol. 19, pp. 96, 2006.
  • [11] S. I. Schlachter, W. Goldacker, A. Frank, B. Ringsdorf, H. Orschulko, “Properties of MgB2 superconductors with regard to space applications,” Cryogenics, vol. 46(2-3), pp. 201-2017, 2006.
  • [33] J. H. Kim and S. Choi, “Carbon doping induced imperfections on MgB2 superconducting wire,” Journal of Analytical Science and Technology, vol. 6, pp. 11, 2015.
  • [34] G. Bovone, D. Matera, C. Bernini, A. S. Siri, A. Malagoli and M. Vignolo, “The influence of wire heat treatment on PIT MgB2 conductors manufactured using laboratory-made boron,” IEEE Transaction on Applied Superconductivity, vol. 25, pp. 6200504, 2015.
There are 41 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics, Material Production Technologies
Journal Section Research Articles
Authors

Fırat Karaboğa 0000-0001-8168-3242

Publication Date October 1, 2019
Submission Date April 11, 2019
Acceptance Date June 19, 2019
Published in Issue Year 2019

Cite

APA Karaboğa, F. (2019). Effect of Rapidly Annealing Process on MgB2 Superconducting Wires. Sakarya University Journal of Science, 23(5), 993-1004. https://doi.org/10.16984/saufenbilder.552659
AMA Karaboğa F. Effect of Rapidly Annealing Process on MgB2 Superconducting Wires. SAUJS. October 2019;23(5):993-1004. doi:10.16984/saufenbilder.552659
Chicago Karaboğa, Fırat. “Effect of Rapidly Annealing Process on MgB2 Superconducting Wires”. Sakarya University Journal of Science 23, no. 5 (October 2019): 993-1004. https://doi.org/10.16984/saufenbilder.552659.
EndNote Karaboğa F (October 1, 2019) Effect of Rapidly Annealing Process on MgB2 Superconducting Wires. Sakarya University Journal of Science 23 5 993–1004.
IEEE F. Karaboğa, “Effect of Rapidly Annealing Process on MgB2 Superconducting Wires”, SAUJS, vol. 23, no. 5, pp. 993–1004, 2019, doi: 10.16984/saufenbilder.552659.
ISNAD Karaboğa, Fırat. “Effect of Rapidly Annealing Process on MgB2 Superconducting Wires”. Sakarya University Journal of Science 23/5 (October 2019), 993-1004. https://doi.org/10.16984/saufenbilder.552659.
JAMA Karaboğa F. Effect of Rapidly Annealing Process on MgB2 Superconducting Wires. SAUJS. 2019;23:993–1004.
MLA Karaboğa, Fırat. “Effect of Rapidly Annealing Process on MgB2 Superconducting Wires”. Sakarya University Journal of Science, vol. 23, no. 5, 2019, pp. 993-1004, doi:10.16984/saufenbilder.552659.
Vancouver Karaboğa F. Effect of Rapidly Annealing Process on MgB2 Superconducting Wires. SAUJS. 2019;23(5):993-1004.