Research Article
BibTex RIS Cite
Year 2019, , 1190 - 1197, 01.12.2019
https://doi.org/10.16984/saufenbilder.557490

Abstract

References

  • [1] Basic Photovoltaic Principles and Methods, Solar Information Module (1982), SERI/SP-290-1448.
  • [2] S. Philipps, Photovoltaics Report, Fraunhofer ISE and Werner Warmuth, PSE AG, https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/PhotovoltaicsReport.pdf
  • [3] M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger and A. W. H. Ho-Baillie, “Solar Cell Efficiency Tables (version 50)”, Prog. Photovoltaics, vol. 25, pp. 668- 676, 2017.
  • [4] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy, vol. 2, no. 5, 2017.
  • [5] J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett and S. W. Glunz “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics, vol. 7, no. 5, pp.1171–1175,2017.
  • [6] J. Hofstetter, C. del Cafiizo, S. Ponce-Alcantara and A. Luque, “Optimisation of SiNx:H anti-reflection coatings for silicon solar cells”, Spanish Conference on Electron Devices, pp.131-134,2007.
  • [7] K. Islam, A. Alnuaimi, H. Ally and A. Nayfeh, “ITO, Si3N4 and ZnO:Al Simulation of Different Anti-reflection Coatings (ARC) for Thin Film a-Si:H Solar Cells,” 2013 European Modelling Symposium, Manchester, pp. 673-676, 2013.
  • [8] D. A. Clugston and P. A. Basore, “PC1D Version 5- 32-Bit Solar Cell Modeling on Personal Computers”, 26th IEEE Photovoltaics Specialist Conference, Anaheim California, pp. 207–210, 1997.
  • [9] Synopsis, “Synopsys TCAD Now Offers Atomic-level Accuracy.” Online Available: https://news.synopsys.com/index.php?s=20295&item=122584. (Accessed: 23-Nov-2018).
  • [10] B. Liu, S. Zhong, J. Liu, Y. Xia and C. Li, “Silicon nitride film by inline PECVD for black silicon solar cells,” International Journal of Photoenergy, vol. 2012, pp. 2–7, 2012.
  • [11] C.-T. Sah, K.A. Yamakawa, R. Lutwack, “Effects of Thickness on Silicon Solar Cell Efficiency”, IEEE Transactions on Electron Devices, vol. 29, no. 5, 1982.
  • [12] A. Mandong, “Design and Simulation of Single, Double, and Multi-Layer Antireflection Coating for Crystalline Silicon Solar Cell”, Master Thesis, Karadeniz Technical University, Trabzon,Turkey,2019.
  • [13] M. Wolf, “The Influence of Heavy Doping Effects on Silicon Solar Cell Performance”, Solar Cells, vol. 17, pp. 53-63, 2018.
  • [14] R.R. King, K.W. Mitchell and J.M. Gee, “Back Surface Cell Structures for Reducing Recombination in CZ Silicon Solar Cells”, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), Waikoloa, USA, 1994.

Analysis of Silicon Solar Cell Device Parameters using PC1D

Year 2019, , 1190 - 1197, 01.12.2019
https://doi.org/10.16984/saufenbilder.557490

Abstract

Perceiving
the role of each layer relevant to the parameters in a silicon solar cell is
important for engineering of solar structures for high efficiencies. PC1D
simulation of silicon solar cells were carried out in this work to evaluate the
performance parameters of each layer and outcomes were analyzed considering
their effects in final cell. Absorber layer, emitter layer, antireflection
coating layer and back surface field layer were studied especially in terms of
doping levels, thicknesses, absorbance behavior and final cell performance. The
short circuit current density (Jsc) is found to be directly
proportional to the absorber layer thickness until the thickness of 160µm whereas
the open circuit voltage (Voc) is inversely proportional for the
range of 30 to 280µm. The device with 2x1020 cm-3 doping
concentration of emitter was more efficient for homogenous emitter solar cells.
The thickness of emitter has degrading effects on the efficiency of the device,
the device with 0.1µm emitter thickness is found to have the highest
efficiency. Doping concentration of back surface field had considerable effect
on Voc of the device for the range of 3x1017 to 3x1018
cm-3. Triple layer antireflection coating improved the short circuit
current density by a ratio of 50.8% and overall efficiency by a ratio of 51.07%
comparing to the those of the cells without antireflection coating. Measured
data of a fabricated high efficiency solar cell was in conformity with the
results of the simulation. According the performed studies and achieved
results, understanding and estimating the effects of these primary parameters
on solar cell performance is beneficial for designing a high efficiency solar
cell structure.

References

  • [1] Basic Photovoltaic Principles and Methods, Solar Information Module (1982), SERI/SP-290-1448.
  • [2] S. Philipps, Photovoltaics Report, Fraunhofer ISE and Werner Warmuth, PSE AG, https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/PhotovoltaicsReport.pdf
  • [3] M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger and A. W. H. Ho-Baillie, “Solar Cell Efficiency Tables (version 50)”, Prog. Photovoltaics, vol. 25, pp. 668- 676, 2017.
  • [4] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy, vol. 2, no. 5, 2017.
  • [5] J. Benick, A. Richter, R. Müller, H. Hauser, F. Feldmann, P. Krenckel, S. Riepe, F. Schindler, M. C. Schubert, M. Hermle, A. W. Bett and S. W. Glunz “High-Efficiency n-Type HP mc Silicon Solar Cells,” IEEE J. Photovoltaics, vol. 7, no. 5, pp.1171–1175,2017.
  • [6] J. Hofstetter, C. del Cafiizo, S. Ponce-Alcantara and A. Luque, “Optimisation of SiNx:H anti-reflection coatings for silicon solar cells”, Spanish Conference on Electron Devices, pp.131-134,2007.
  • [7] K. Islam, A. Alnuaimi, H. Ally and A. Nayfeh, “ITO, Si3N4 and ZnO:Al Simulation of Different Anti-reflection Coatings (ARC) for Thin Film a-Si:H Solar Cells,” 2013 European Modelling Symposium, Manchester, pp. 673-676, 2013.
  • [8] D. A. Clugston and P. A. Basore, “PC1D Version 5- 32-Bit Solar Cell Modeling on Personal Computers”, 26th IEEE Photovoltaics Specialist Conference, Anaheim California, pp. 207–210, 1997.
  • [9] Synopsis, “Synopsys TCAD Now Offers Atomic-level Accuracy.” Online Available: https://news.synopsys.com/index.php?s=20295&item=122584. (Accessed: 23-Nov-2018).
  • [10] B. Liu, S. Zhong, J. Liu, Y. Xia and C. Li, “Silicon nitride film by inline PECVD for black silicon solar cells,” International Journal of Photoenergy, vol. 2012, pp. 2–7, 2012.
  • [11] C.-T. Sah, K.A. Yamakawa, R. Lutwack, “Effects of Thickness on Silicon Solar Cell Efficiency”, IEEE Transactions on Electron Devices, vol. 29, no. 5, 1982.
  • [12] A. Mandong, “Design and Simulation of Single, Double, and Multi-Layer Antireflection Coating for Crystalline Silicon Solar Cell”, Master Thesis, Karadeniz Technical University, Trabzon,Turkey,2019.
  • [13] M. Wolf, “The Influence of Heavy Doping Effects on Silicon Solar Cell Performance”, Solar Cells, vol. 17, pp. 53-63, 2018.
  • [14] R.R. King, K.W. Mitchell and J.M. Gee, “Back Surface Cell Structures for Reducing Recombination in CZ Silicon Solar Cells”, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), Waikoloa, USA, 1994.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering, Electrical Engineering
Journal Section Research Articles
Authors

Al-montazer Mandong 0000-0003-3473-9869

Abdullah Üzüm 0000-0001-5324-8892

Publication Date December 1, 2019
Submission Date April 24, 2019
Acceptance Date August 17, 2019
Published in Issue Year 2019

Cite

APA Mandong, A.-m., & Üzüm, A. (2019). Analysis of Silicon Solar Cell Device Parameters using PC1D. Sakarya University Journal of Science, 23(6), 1190-1197. https://doi.org/10.16984/saufenbilder.557490
AMA Mandong Am, Üzüm A. Analysis of Silicon Solar Cell Device Parameters using PC1D. SAUJS. December 2019;23(6):1190-1197. doi:10.16984/saufenbilder.557490
Chicago Mandong, Al-montazer, and Abdullah Üzüm. “Analysis of Silicon Solar Cell Device Parameters Using PC1D”. Sakarya University Journal of Science 23, no. 6 (December 2019): 1190-97. https://doi.org/10.16984/saufenbilder.557490.
EndNote Mandong A-m, Üzüm A (December 1, 2019) Analysis of Silicon Solar Cell Device Parameters using PC1D. Sakarya University Journal of Science 23 6 1190–1197.
IEEE A.-m. Mandong and A. Üzüm, “Analysis of Silicon Solar Cell Device Parameters using PC1D”, SAUJS, vol. 23, no. 6, pp. 1190–1197, 2019, doi: 10.16984/saufenbilder.557490.
ISNAD Mandong, Al-montazer - Üzüm, Abdullah. “Analysis of Silicon Solar Cell Device Parameters Using PC1D”. Sakarya University Journal of Science 23/6 (December 2019), 1190-1197. https://doi.org/10.16984/saufenbilder.557490.
JAMA Mandong A-m, Üzüm A. Analysis of Silicon Solar Cell Device Parameters using PC1D. SAUJS. 2019;23:1190–1197.
MLA Mandong, Al-montazer and Abdullah Üzüm. “Analysis of Silicon Solar Cell Device Parameters Using PC1D”. Sakarya University Journal of Science, vol. 23, no. 6, 2019, pp. 1190-7, doi:10.16984/saufenbilder.557490.
Vancouver Mandong A-m, Üzüm A. Analysis of Silicon Solar Cell Device Parameters using PC1D. SAUJS. 2019;23(6):1190-7.

Cited By











30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.