Research Article
BibTex RIS Cite
Year 2020, , 67 - 77, 01.02.2020
https://doi.org/10.16984/saufenbilder.598141

Abstract

References

  • [1] C. T. Cherian, M. V. Reddy, S. C. Haur, B. V. R. Chowdari “Interconnected Network of CoMoO4 Submicrometer Particles As High Capacity Anode Material for Lithium Ion Batteries,” ACS Appl. Mater. Interfaces, vol. 5, pp. 918−923, 2013.
  • [2] Q.Yang, S.-Y. Lin, “Rationally designed nanosheet-based CoMoO4–NiMoO4 nanotubes for high-performance electrochemical electrodes,” RSC. Adv., vol.6, pp. 10520-10526, 2016.
  • [3] N.N. Leyzerovich, K.G. Bramnik, T. Buhrmester, H. Ehrenberg, H. Fuess, “Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni and Fe),” J. Power Sources, vol. 127, pp. 76–84, 2004.
  • [4] P. R. Jothi, K. Shanthi, R. R. Salunkhe, M. Pramanik, V. Malgras, S. M. Alshehri, Y. Yamauchi “Synthesis and Characterization of α-NiMoO4 Nanorods for Supercapacitor Application,” Eur. J. Inorg. Chem., pp. 3694–3699, 2015.
  • [5] S.-S. Kim, S. Ogura, H. Ikuta, Y. Uchimoto, M. Wakihara “Reaction mechanisms of MnMoO4 for high capacity anode material of Li secondary battery,” Solid State Ionics, vol. 146, pp. 249–256, 2002.
  • [6] 6. D. Zhang, R. Zhang, C. Xu, Y. Fan, B. Yuan, “Microwave-assisted solvothermal synthesis of nickel molybdate nanosheets as a potential catalytic platform for NADH and ethanol sensing” Sens. Actuators B, vol. 206, pp. 1–7, 2015.
  • [7] H. Wan, J. Jiang, X. Ji, L. Miao, L. Zhang, K. Xu, H. Chen, Y. Ruan, “Rapid microwave-assisted synthesis NiMoO4·H2O nanoclusters for supercapacitors,” Mater. Lett. Vol. 108, pp. 164–167, 2013.[8] 8. M. C. Liu, L. B. Kong, C. Lu, X. J. Ma, X. M. Li, Y. C. Luo, L. Kang, “Design and synthesis of CoMoO4–NiMoO4·xH2O bundles with improved electrochemical properties for supercapacitors,” J. Mater. Chem. A, vol.1, pp. 1380–1387, 2013.
  • [9] S. Vidya, S. Solomon, J. K. Thomas, “Single step combustion synthesis of nanocrystalline scheelite Ba0.5Sr0.5MoO4 for optical and LTCC applications: Its structural, optical and dielectric properties,” J. Electroceramics vol.36, pp.142-149, 2016.
  • [10] M. P.-Kalamuei, M. M.-Kamazani, M. S.-Niasari,S. M. H.-Mashkani, “A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application,” Ultrason. Sonochem., vol 23, pp.246-256, 2015.
  • [11] M. Devi, U. V. Varadaraju, “Lithium insertion in lithium iron molybdate,” Electrochem. commun., vol.18,pp.112-115, 2012.
  • [12] M. Zhou, X. Jiang, C. Li, Z. Lin, J. Yao, Y. Wu, “The Double Molybdate Rb2Ba(MoO4)2: Synthesis, Crystal Structure, Optical, Thermal, Vibrational Properties, and Electronic Structure,” Z. Anorg. Allg. Chem., vol.641, 2321-2525, 2015.
  • [13] W. Xiao, J. S. Chen, C. M. Li, R. Xu, X. W. Lou “Synthesis, Characterization, and Lithium Storage Capability of AMoO4 (A = Ni, Co) Nanorods, ” Chem. Mater., vol. 22, pp.746–754, 2010.
  • [14] X. Li, J. Bai, H. Wang, “Synthesis of hierarchical free-standing NiMoO4/reduced graphene oxide membrane for high-performance lithium storage,” J Solid State Electrochem., vol. 22, pp. 2659–2669, 2018.
  • [15] B. Wang, S. Li, X. Wu, W. Tian, J. Liu, M. Yu “Integration of network-like porous NiMoO4 nanoarchitectures assembled with ultrathin mesoporous nanosheets on three-dimensional graphene foam for highly reversible lithium storage,” J. Mater. Chem. A, vol.3, pp. 13691-13698, 2015.
  • [16] D. Lyu, L. Zhang, H. Wei, H. Geng, H. Gu “Synthesis of graphene wrapped porous CoMoO4 nanospheres as high-performance anodes for rechargeable lithium-ion batteries” RSC Adv., vol. 7, pp. 51506–51511, 2017.
  • [17] J. Xu, S. Z. Gu, L. Fan, P. Xu and B. G. Lu, “Electrospun Lotus Root-like CoMoO4@Graphene Nanofibers as High-Performance Anode for Lithium Ion Batteries,” Electrochim. Acta, vol. 196,pp. 125–130, 2016.
  • [18] K. Schuh, “Hydrothermal synthesis of molybdenum based oxides for the application in catalysis,” Dissertation, Karlsruher Institut für Technologie, 2014.
  • [19] Y. Ding, Y. Wan, Y.-L. Min, W. Zhang, S.-H. Yu “General Synthesis and Phase Control of Metal Molybdate Hydrates MMoO4·nH2O (M:Co, Ni, Mn and n:0, 3/4, 1) Nano/Microcrystals by a Hydrothermal Approach: Magnetic, Photocatalytic, and Electrochemical Properties,” Inorganic Chem., vol.47, pp.7813-7823, 2008.
  • [20] X. Tian, X. Li, T. Yang, K. Wang, H. Wang, Y. Song, Z. Liu, Q. Guo, “Porous worm-like NiMoO4 coaxially decorated electrospun carbon nanofiber as binder-free electrodes for high performance supercapacitors and lithium-ion batteries,” Appl. Surface Science, vol. 434 pp.49–56, 2018.
  • [21] S.-S.Kim, S. Ogura, H. Ikuta, Y. Uchimoto, M. Wakihara, “Reaction mechanisms of MnMoO4 for high capacity anode material of Li secondary battery,” Solid State Ionics, vol. 146, pp.249–256, 2002.
  • [22] S. Denis, E. Baudrin, M. Touboul, J.-M. Tarascon, “Synthesis and Electrochemical Properties of Amorphous Vanadates of General Formula  RVO4 (R = In, Cr, Fe, Al, Y) vs. Li,” J. Electrochem. Soc., vol.144, pp.4099-4109, 1997.
  • [23] C. Tan, J. Cao, A. M. Khattak, F. Cai, B. Jiang, G. Yang, S. Hu “High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries,” J. Power Sources, vol. 270, pp. 28-33, 2014.

Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs

Year 2020, , 67 - 77, 01.02.2020
https://doi.org/10.16984/saufenbilder.598141

Abstract

The nanostructured
materials represent the center of fundamental advances to design new era
electrodes for high energy density batteries. Especially, one-dimensional
nanomaterials are recognized as a solution due to their large surface area,
short diffusion distance and high volume accommodation ability. In this sense,
first in literature a comparative study has been done to examine the
electrochemical performances of differently fabricated transition metal oxide molybdate
powders: lithium storage capabilities of nickel-cobalt-molybdate composite is
compared to that of the cobalt oxide decorated nickel molybdate powders. To
measure the effect of cobalt atom, bare nickel molybdate powders have been also
fabricated and tested. The lithiation mechanism of these electrodes are
discussed based on the cyclic voltammetry curvatures and the SEI layer
formation on the electrodes and the electrode/electrolyte stability upon
cycling are analyzed following the electrochemical impedance spectroscopy test
results (after 1st,2nd and 4th cycles). The outcome of characterizations reveal
that the addition of cobalt changes the powder morphology and improves the
electrochemical performance of the electrode. Among three samples, the cobalt oxide
decorated nickel molybdate performs higher retention and rate performance since
the top layer promotes more stable electrode/electrolyte interface providing a
capacity of 290 mAh/g after 100 cycles. The rate performance of the sample is
also found promising, the electrode delivers 200 mAh/g even at 400mA/g rate.

References

  • [1] C. T. Cherian, M. V. Reddy, S. C. Haur, B. V. R. Chowdari “Interconnected Network of CoMoO4 Submicrometer Particles As High Capacity Anode Material for Lithium Ion Batteries,” ACS Appl. Mater. Interfaces, vol. 5, pp. 918−923, 2013.
  • [2] Q.Yang, S.-Y. Lin, “Rationally designed nanosheet-based CoMoO4–NiMoO4 nanotubes for high-performance electrochemical electrodes,” RSC. Adv., vol.6, pp. 10520-10526, 2016.
  • [3] N.N. Leyzerovich, K.G. Bramnik, T. Buhrmester, H. Ehrenberg, H. Fuess, “Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni and Fe),” J. Power Sources, vol. 127, pp. 76–84, 2004.
  • [4] P. R. Jothi, K. Shanthi, R. R. Salunkhe, M. Pramanik, V. Malgras, S. M. Alshehri, Y. Yamauchi “Synthesis and Characterization of α-NiMoO4 Nanorods for Supercapacitor Application,” Eur. J. Inorg. Chem., pp. 3694–3699, 2015.
  • [5] S.-S. Kim, S. Ogura, H. Ikuta, Y. Uchimoto, M. Wakihara “Reaction mechanisms of MnMoO4 for high capacity anode material of Li secondary battery,” Solid State Ionics, vol. 146, pp. 249–256, 2002.
  • [6] 6. D. Zhang, R. Zhang, C. Xu, Y. Fan, B. Yuan, “Microwave-assisted solvothermal synthesis of nickel molybdate nanosheets as a potential catalytic platform for NADH and ethanol sensing” Sens. Actuators B, vol. 206, pp. 1–7, 2015.
  • [7] H. Wan, J. Jiang, X. Ji, L. Miao, L. Zhang, K. Xu, H. Chen, Y. Ruan, “Rapid microwave-assisted synthesis NiMoO4·H2O nanoclusters for supercapacitors,” Mater. Lett. Vol. 108, pp. 164–167, 2013.[8] 8. M. C. Liu, L. B. Kong, C. Lu, X. J. Ma, X. M. Li, Y. C. Luo, L. Kang, “Design and synthesis of CoMoO4–NiMoO4·xH2O bundles with improved electrochemical properties for supercapacitors,” J. Mater. Chem. A, vol.1, pp. 1380–1387, 2013.
  • [9] S. Vidya, S. Solomon, J. K. Thomas, “Single step combustion synthesis of nanocrystalline scheelite Ba0.5Sr0.5MoO4 for optical and LTCC applications: Its structural, optical and dielectric properties,” J. Electroceramics vol.36, pp.142-149, 2016.
  • [10] M. P.-Kalamuei, M. M.-Kamazani, M. S.-Niasari,S. M. H.-Mashkani, “A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application,” Ultrason. Sonochem., vol 23, pp.246-256, 2015.
  • [11] M. Devi, U. V. Varadaraju, “Lithium insertion in lithium iron molybdate,” Electrochem. commun., vol.18,pp.112-115, 2012.
  • [12] M. Zhou, X. Jiang, C. Li, Z. Lin, J. Yao, Y. Wu, “The Double Molybdate Rb2Ba(MoO4)2: Synthesis, Crystal Structure, Optical, Thermal, Vibrational Properties, and Electronic Structure,” Z. Anorg. Allg. Chem., vol.641, 2321-2525, 2015.
  • [13] W. Xiao, J. S. Chen, C. M. Li, R. Xu, X. W. Lou “Synthesis, Characterization, and Lithium Storage Capability of AMoO4 (A = Ni, Co) Nanorods, ” Chem. Mater., vol. 22, pp.746–754, 2010.
  • [14] X. Li, J. Bai, H. Wang, “Synthesis of hierarchical free-standing NiMoO4/reduced graphene oxide membrane for high-performance lithium storage,” J Solid State Electrochem., vol. 22, pp. 2659–2669, 2018.
  • [15] B. Wang, S. Li, X. Wu, W. Tian, J. Liu, M. Yu “Integration of network-like porous NiMoO4 nanoarchitectures assembled with ultrathin mesoporous nanosheets on three-dimensional graphene foam for highly reversible lithium storage,” J. Mater. Chem. A, vol.3, pp. 13691-13698, 2015.
  • [16] D. Lyu, L. Zhang, H. Wei, H. Geng, H. Gu “Synthesis of graphene wrapped porous CoMoO4 nanospheres as high-performance anodes for rechargeable lithium-ion batteries” RSC Adv., vol. 7, pp. 51506–51511, 2017.
  • [17] J. Xu, S. Z. Gu, L. Fan, P. Xu and B. G. Lu, “Electrospun Lotus Root-like CoMoO4@Graphene Nanofibers as High-Performance Anode for Lithium Ion Batteries,” Electrochim. Acta, vol. 196,pp. 125–130, 2016.
  • [18] K. Schuh, “Hydrothermal synthesis of molybdenum based oxides for the application in catalysis,” Dissertation, Karlsruher Institut für Technologie, 2014.
  • [19] Y. Ding, Y. Wan, Y.-L. Min, W. Zhang, S.-H. Yu “General Synthesis and Phase Control of Metal Molybdate Hydrates MMoO4·nH2O (M:Co, Ni, Mn and n:0, 3/4, 1) Nano/Microcrystals by a Hydrothermal Approach: Magnetic, Photocatalytic, and Electrochemical Properties,” Inorganic Chem., vol.47, pp.7813-7823, 2008.
  • [20] X. Tian, X. Li, T. Yang, K. Wang, H. Wang, Y. Song, Z. Liu, Q. Guo, “Porous worm-like NiMoO4 coaxially decorated electrospun carbon nanofiber as binder-free electrodes for high performance supercapacitors and lithium-ion batteries,” Appl. Surface Science, vol. 434 pp.49–56, 2018.
  • [21] S.-S.Kim, S. Ogura, H. Ikuta, Y. Uchimoto, M. Wakihara, “Reaction mechanisms of MnMoO4 for high capacity anode material of Li secondary battery,” Solid State Ionics, vol. 146, pp.249–256, 2002.
  • [22] S. Denis, E. Baudrin, M. Touboul, J.-M. Tarascon, “Synthesis and Electrochemical Properties of Amorphous Vanadates of General Formula  RVO4 (R = In, Cr, Fe, Al, Y) vs. Li,” J. Electrochem. Soc., vol.144, pp.4099-4109, 1997.
  • [23] C. Tan, J. Cao, A. M. Khattak, F. Cai, B. Jiang, G. Yang, S. Hu “High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries,” J. Power Sources, vol. 270, pp. 28-33, 2014.
There are 22 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Billur Deniz Karahan 0000-0002-7839-2222

Publication Date February 1, 2020
Submission Date July 29, 2019
Acceptance Date October 10, 2019
Published in Issue Year 2020

Cite

APA Karahan, B. D. (2020). Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs. Sakarya University Journal of Science, 24(1), 67-77. https://doi.org/10.16984/saufenbilder.598141
AMA Karahan BD. Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs. SAUJS. February 2020;24(1):67-77. doi:10.16984/saufenbilder.598141
Chicago Karahan, Billur Deniz. “Comparative Study about Differently Structured Transitional Metal Molybdates As Negative Electrodes for LIBs”. Sakarya University Journal of Science 24, no. 1 (February 2020): 67-77. https://doi.org/10.16984/saufenbilder.598141.
EndNote Karahan BD (February 1, 2020) Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs. Sakarya University Journal of Science 24 1 67–77.
IEEE B. D. Karahan, “Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs”, SAUJS, vol. 24, no. 1, pp. 67–77, 2020, doi: 10.16984/saufenbilder.598141.
ISNAD Karahan, Billur Deniz. “Comparative Study about Differently Structured Transitional Metal Molybdates As Negative Electrodes for LIBs”. Sakarya University Journal of Science 24/1 (February 2020), 67-77. https://doi.org/10.16984/saufenbilder.598141.
JAMA Karahan BD. Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs. SAUJS. 2020;24:67–77.
MLA Karahan, Billur Deniz. “Comparative Study about Differently Structured Transitional Metal Molybdates As Negative Electrodes for LIBs”. Sakarya University Journal of Science, vol. 24, no. 1, 2020, pp. 67-77, doi:10.16984/saufenbilder.598141.
Vancouver Karahan BD. Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs. SAUJS. 2020;24(1):67-7.