Research Article
BibTex RIS Cite

Theta Point Calculation of a Polymer Chain with Electric Dipole Moments: Monte Carlo Simulation

Year 2020, , 865 - 871, 01.10.2020
https://doi.org/10.16984/saufenbilder.710797

Abstract

Monte Carlo simulations are used to simulate a single polymer chain in a more generalized model. The more generalized model differs from the simpler models by including dipole-dipole interactions. The polymer chain is modeled as a freely rotating chain where the neighboring beads are connected by harmonic spring. Excluded volume effects are included employing modified Lennard-Jones potential. As the extension in this work, each monomer unit carries permanently a freely-rotating electric dipole moment. After getting the system equilibrated the average values are measured and Θ-temperature of the system is determined. The effects of the presence of the dipole moments to the Θ-temperature of the system are investigated. The results are analyzed in comparison with a bare model.

Supporting Institution

TÜBİTAK

Project Number

101M459

Thanks

Dr. Christian Seidel ve Prof. Dr. İdris Gümüş

References

  • P. C. Painter and M. M. Coleman, “Fundamentals of polymer science: an introductory text”, Lancaster, Pa.: Technomic Pub. Co., 1997.
  • N. G. McCrum, C. P. Buckley and C. B. Bucknall, “Principles of polymer engineering”, Exord, New York, Oxford University Press, 1997.
  • K. Binder and A. Milchev, “Off-lattice Monte Carlo methods for coarse-grained models of polymeric materials and selected applications”, J. Comput. Aided Mater. Des., 9, pp. 33-74, 2000.
  • P. Hiemenz and L. Timothy, “Polymer Chemistry”, Boca Raton, Florida: CRC Press. ISBN 1-57444-779-3, 2007.
  • H. Elias, “Theta Solvents”, Wiley Database of Polymer Properties, John Wiley & Sons, 2003.
  • P. Sundararajan, “Physical Properties of Polymers Handbook”, Ed. James Mark (New York, New York: Springer, 2006.
  • P. Flory, “Principles of Polymer Chemistry”, Cornell Univ.: Ithaca, ISBN 0-8014-0134-8, 1971.
  • S. Uyaver and C. Seidel, “Pearl-necklace structures in annealed polyelectrolytes”, The Journal of Physical Chemistry B, vol. 108, no. 49, pp. 18804-18814, 2004.
  • S. Uyaver and C. Seidel, “Effect of varying salt concentration on the behavior of weak polyelectrolyes in a poor solvent”, Macromolecules, vol. 42, no. 4, pp. 1352-1361, 2009.
  • B. J. Cherayil, J. F. Douglas and K. F. Freed, “Effect of residual interactions on polymer properties near the theta point”, The Journal of Chemical Physics, vol. 83, pp. 5293-5310, 1985.
  • B. J. Cherayil, J. F. Douglas and K. F. Freed, “Effect of residual interactions on polymer properties near the theta point. II. Higher moments and comparison with Monte Carlo calculations”, The Journal of Chemical Physics, vol. 87, pp. 3089-3098, 1987.
  • M. K. Kosmas, “Solvent effects on the theta temperature of polymers of various architectures”, J. Chem. Soc., Faraday Trans. 2, vol. 84, no. 6, pp. 633-642, 1988.
  • Z. Zhou and P. J. Daivis, “Molecular dynamics study of polymer conformation as a function of concentration and solvent quality”, Journal of Chemical Physics, 130(22), (224904-)1-10, 2009.
  • A. V. Lyulin, B. Dünweg, O. V. Borisov, and A. A. Darinskii, “Computer simulation studies of a single polyelectrolyte chain in poor solvent”, Macromolecules, vol. 32, pp. 3264-3278, 1999.
  • J. N. Isralelachvili, “Intermolecular and Surface Forces: With Application to Colloidal and Biological Systems”, 2nd Edition, Academic Press, 1992.
  • D. P. Landau and K. Binder, “A Guide to Monte Carlo Simulations in Statistical Physics”, Cambridge University Press, New York, NY, ISBN 0-521-65366-5, 2000.
  • P. Chodanowski and S. Stoll, “Monte Carlo simulations of hydrophobic polyelectrolytes: Evidence of complex configurational transitions”, J. Chem. Phys., vol. 111, pp. 6069-6081, 1999.
  • S. Uyaver and C. Seidel, “First-order conformational transition of annealed polyelectrolytes in a poor solvent”, Europhysics Letter, vol. 64, no. 4, 536-542, 2003.
  • D. I. Dimitrov, A. Milchev and K. Binder, “Polymer brushes in solvents of variable quality: Molecular dynamics simulations using explicit solvent”, The Journal of Chemical Physics, 127, (084905-)1-9, 2007.
  • S. W. Lovesey and W. Marshall, “Theory of Thermal Neutron Scattering”, Oxford University Press, 1971.
  • R. Pecora ed., “Dynamic Light Scattering”, Plenum Press: New York., 1985.
Year 2020, , 865 - 871, 01.10.2020
https://doi.org/10.16984/saufenbilder.710797

Abstract

Project Number

101M459

References

  • P. C. Painter and M. M. Coleman, “Fundamentals of polymer science: an introductory text”, Lancaster, Pa.: Technomic Pub. Co., 1997.
  • N. G. McCrum, C. P. Buckley and C. B. Bucknall, “Principles of polymer engineering”, Exord, New York, Oxford University Press, 1997.
  • K. Binder and A. Milchev, “Off-lattice Monte Carlo methods for coarse-grained models of polymeric materials and selected applications”, J. Comput. Aided Mater. Des., 9, pp. 33-74, 2000.
  • P. Hiemenz and L. Timothy, “Polymer Chemistry”, Boca Raton, Florida: CRC Press. ISBN 1-57444-779-3, 2007.
  • H. Elias, “Theta Solvents”, Wiley Database of Polymer Properties, John Wiley & Sons, 2003.
  • P. Sundararajan, “Physical Properties of Polymers Handbook”, Ed. James Mark (New York, New York: Springer, 2006.
  • P. Flory, “Principles of Polymer Chemistry”, Cornell Univ.: Ithaca, ISBN 0-8014-0134-8, 1971.
  • S. Uyaver and C. Seidel, “Pearl-necklace structures in annealed polyelectrolytes”, The Journal of Physical Chemistry B, vol. 108, no. 49, pp. 18804-18814, 2004.
  • S. Uyaver and C. Seidel, “Effect of varying salt concentration on the behavior of weak polyelectrolyes in a poor solvent”, Macromolecules, vol. 42, no. 4, pp. 1352-1361, 2009.
  • B. J. Cherayil, J. F. Douglas and K. F. Freed, “Effect of residual interactions on polymer properties near the theta point”, The Journal of Chemical Physics, vol. 83, pp. 5293-5310, 1985.
  • B. J. Cherayil, J. F. Douglas and K. F. Freed, “Effect of residual interactions on polymer properties near the theta point. II. Higher moments and comparison with Monte Carlo calculations”, The Journal of Chemical Physics, vol. 87, pp. 3089-3098, 1987.
  • M. K. Kosmas, “Solvent effects on the theta temperature of polymers of various architectures”, J. Chem. Soc., Faraday Trans. 2, vol. 84, no. 6, pp. 633-642, 1988.
  • Z. Zhou and P. J. Daivis, “Molecular dynamics study of polymer conformation as a function of concentration and solvent quality”, Journal of Chemical Physics, 130(22), (224904-)1-10, 2009.
  • A. V. Lyulin, B. Dünweg, O. V. Borisov, and A. A. Darinskii, “Computer simulation studies of a single polyelectrolyte chain in poor solvent”, Macromolecules, vol. 32, pp. 3264-3278, 1999.
  • J. N. Isralelachvili, “Intermolecular and Surface Forces: With Application to Colloidal and Biological Systems”, 2nd Edition, Academic Press, 1992.
  • D. P. Landau and K. Binder, “A Guide to Monte Carlo Simulations in Statistical Physics”, Cambridge University Press, New York, NY, ISBN 0-521-65366-5, 2000.
  • P. Chodanowski and S. Stoll, “Monte Carlo simulations of hydrophobic polyelectrolytes: Evidence of complex configurational transitions”, J. Chem. Phys., vol. 111, pp. 6069-6081, 1999.
  • S. Uyaver and C. Seidel, “First-order conformational transition of annealed polyelectrolytes in a poor solvent”, Europhysics Letter, vol. 64, no. 4, 536-542, 2003.
  • D. I. Dimitrov, A. Milchev and K. Binder, “Polymer brushes in solvents of variable quality: Molecular dynamics simulations using explicit solvent”, The Journal of Chemical Physics, 127, (084905-)1-9, 2007.
  • S. W. Lovesey and W. Marshall, “Theory of Thermal Neutron Scattering”, Oxford University Press, 1971.
  • R. Pecora ed., “Dynamic Light Scattering”, Plenum Press: New York., 1985.
There are 21 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Şahin Uyaver 0000-0001-8776-3032

Project Number 101M459
Publication Date October 1, 2020
Submission Date March 29, 2020
Acceptance Date June 20, 2020
Published in Issue Year 2020

Cite

APA Uyaver, Ş. (2020). Theta Point Calculation of a Polymer Chain with Electric Dipole Moments: Monte Carlo Simulation. Sakarya University Journal of Science, 24(5), 865-871. https://doi.org/10.16984/saufenbilder.710797
AMA Uyaver Ş. Theta Point Calculation of a Polymer Chain with Electric Dipole Moments: Monte Carlo Simulation. SAUJS. October 2020;24(5):865-871. doi:10.16984/saufenbilder.710797
Chicago Uyaver, Şahin. “Theta Point Calculation of a Polymer Chain With Electric Dipole Moments: Monte Carlo Simulation”. Sakarya University Journal of Science 24, no. 5 (October 2020): 865-71. https://doi.org/10.16984/saufenbilder.710797.
EndNote Uyaver Ş (October 1, 2020) Theta Point Calculation of a Polymer Chain with Electric Dipole Moments: Monte Carlo Simulation. Sakarya University Journal of Science 24 5 865–871.
IEEE Ş. Uyaver, “Theta Point Calculation of a Polymer Chain with Electric Dipole Moments: Monte Carlo Simulation”, SAUJS, vol. 24, no. 5, pp. 865–871, 2020, doi: 10.16984/saufenbilder.710797.
ISNAD Uyaver, Şahin. “Theta Point Calculation of a Polymer Chain With Electric Dipole Moments: Monte Carlo Simulation”. Sakarya University Journal of Science 24/5 (October 2020), 865-871. https://doi.org/10.16984/saufenbilder.710797.
JAMA Uyaver Ş. Theta Point Calculation of a Polymer Chain with Electric Dipole Moments: Monte Carlo Simulation. SAUJS. 2020;24:865–871.
MLA Uyaver, Şahin. “Theta Point Calculation of a Polymer Chain With Electric Dipole Moments: Monte Carlo Simulation”. Sakarya University Journal of Science, vol. 24, no. 5, 2020, pp. 865-71, doi:10.16984/saufenbilder.710797.
Vancouver Uyaver Ş. Theta Point Calculation of a Polymer Chain with Electric Dipole Moments: Monte Carlo Simulation. SAUJS. 2020;24(5):865-71.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.