Research Article
BibTex RIS Cite
Year 2020, , 782 - 790, 01.08.2020
https://doi.org/10.16984/saufenbilder.733935

Abstract

References

  • [1] P. Danchev, “Trivial units in commutative group algebras,” Extr. Math., vol. 23, pp. 49-60, 2008.
  • [2] P. Danchev, “Trivial units in abelian group algebras,” Extr. Math., vol. 24, pp. 47-53, 2009.
  • [3] P. Danchev, “Idempotent units in commutative group rings,” Kochi J. Math, vol. 4, pp. 61-68, 2009.
  • [4] P. Danchev, “Idempotent units of commutative group rings,” Commun. Algebra, vol. 38, pp. 4649-4654, 2010.
  • [5] P. Danchev, “On some idempotent torsion decompositions of normed units in commutative group rings,” J. Calcutta Math. Soc., vol. 6, pp. 31-34, 2010.
  • [6] P. Danchev, “Idempotent-torsion normalized units in abelian group rings,” Bull Calcutta Math. Soc., to appear, 2011.
  • [7] G. Karpilovsky, “On units in commutative group rings,” Arch. Math. (Basel), vol. 38, pp. 420–422, 1982.
  • [8] G. Karpilovsky, “On finite generation of unit groups of commutative group rings,” Arch. Math. (Basel), vol. 40, pp. 503–508, 1983.
  • [9] G. Karpilovsky, “Unit groups of group rings,” Harlow: Longman Sci. and Techn., 1989.
  • [10] G. Karpilovsky, “Units of commutative group algebras,” Expo. Math., vol. 8, pp. 247-287, 1990.
  • [11] W. May, “Group algebras over finitely generated rings,” J. Algebra vol. 39 pp. 483–511, 1976.
  • [12] C. Polcino Milies and S. K. Sehgal, “An introduction to group rings,” Kluwer, North-Holland, Amsterdam, 2002.
  • [13] S. K. Sehgal, “Topics in group rings,” Marcel Dekker, New York, 1978.

On Idempotent Units in Commutative Group Rings

Year 2020, , 782 - 790, 01.08.2020
https://doi.org/10.16984/saufenbilder.733935

Abstract

Special elements as units, which are defined utilizing idempotent elements, have a very crucial place in a commutative group ring. As a remark, we note that an element is said to be idempotent if r^2=r in a ring. For a group ring RG, idempotent units are defined as finite linear combinations of elements of G over the idempotent elements in R or formally, idempotent units can be stated as of the form id(RG)={∑_(r_g∈id(R))▒〖r_g g〗: ∑_(r_g∈id(R))▒r_g =1 and r_g r_h=0 when g≠h} where id(R) is the set of all idempotent elements [3], [4], [5], [6]. Danchev [3] introduced some necessary and sufficient conditions for all the normalized units are to be idempotent units for groups of orders 2 and 3. In this study, by considering some restrictions, we investigate necessary and sufficient conditions for equalities:
i.V(R(G×H))=id(R(G×H)),
ii.V(R(G×H))=G×id(RH),
iii.V(R(G×H))=id(RG)×H
where G×H is the direct product of groups G and H. Therefore, the study can be seen as a generalization of [3], [4]. Notations mostly follow [12], [13].

References

  • [1] P. Danchev, “Trivial units in commutative group algebras,” Extr. Math., vol. 23, pp. 49-60, 2008.
  • [2] P. Danchev, “Trivial units in abelian group algebras,” Extr. Math., vol. 24, pp. 47-53, 2009.
  • [3] P. Danchev, “Idempotent units in commutative group rings,” Kochi J. Math, vol. 4, pp. 61-68, 2009.
  • [4] P. Danchev, “Idempotent units of commutative group rings,” Commun. Algebra, vol. 38, pp. 4649-4654, 2010.
  • [5] P. Danchev, “On some idempotent torsion decompositions of normed units in commutative group rings,” J. Calcutta Math. Soc., vol. 6, pp. 31-34, 2010.
  • [6] P. Danchev, “Idempotent-torsion normalized units in abelian group rings,” Bull Calcutta Math. Soc., to appear, 2011.
  • [7] G. Karpilovsky, “On units in commutative group rings,” Arch. Math. (Basel), vol. 38, pp. 420–422, 1982.
  • [8] G. Karpilovsky, “On finite generation of unit groups of commutative group rings,” Arch. Math. (Basel), vol. 40, pp. 503–508, 1983.
  • [9] G. Karpilovsky, “Unit groups of group rings,” Harlow: Longman Sci. and Techn., 1989.
  • [10] G. Karpilovsky, “Units of commutative group algebras,” Expo. Math., vol. 8, pp. 247-287, 1990.
  • [11] W. May, “Group algebras over finitely generated rings,” J. Algebra vol. 39 pp. 483–511, 1976.
  • [12] C. Polcino Milies and S. K. Sehgal, “An introduction to group rings,” Kluwer, North-Holland, Amsterdam, 2002.
  • [13] S. K. Sehgal, “Topics in group rings,” Marcel Dekker, New York, 1978.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Ömer Küsmüş 0000-0001-7397-0735

Publication Date August 1, 2020
Submission Date May 7, 2020
Acceptance Date June 10, 2020
Published in Issue Year 2020

Cite

APA Küsmüş, Ö. (2020). On Idempotent Units in Commutative Group Rings. Sakarya University Journal of Science, 24(4), 782-790. https://doi.org/10.16984/saufenbilder.733935
AMA Küsmüş Ö. On Idempotent Units in Commutative Group Rings. SAUJS. August 2020;24(4):782-790. doi:10.16984/saufenbilder.733935
Chicago Küsmüş, Ömer. “On Idempotent Units in Commutative Group Rings”. Sakarya University Journal of Science 24, no. 4 (August 2020): 782-90. https://doi.org/10.16984/saufenbilder.733935.
EndNote Küsmüş Ö (August 1, 2020) On Idempotent Units in Commutative Group Rings. Sakarya University Journal of Science 24 4 782–790.
IEEE Ö. Küsmüş, “On Idempotent Units in Commutative Group Rings”, SAUJS, vol. 24, no. 4, pp. 782–790, 2020, doi: 10.16984/saufenbilder.733935.
ISNAD Küsmüş, Ömer. “On Idempotent Units in Commutative Group Rings”. Sakarya University Journal of Science 24/4 (August 2020), 782-790. https://doi.org/10.16984/saufenbilder.733935.
JAMA Küsmüş Ö. On Idempotent Units in Commutative Group Rings. SAUJS. 2020;24:782–790.
MLA Küsmüş, Ömer. “On Idempotent Units in Commutative Group Rings”. Sakarya University Journal of Science, vol. 24, no. 4, 2020, pp. 782-90, doi:10.16984/saufenbilder.733935.
Vancouver Küsmüş Ö. On Idempotent Units in Commutative Group Rings. SAUJS. 2020;24(4):782-90.