Research Article
BibTex RIS Cite
Year 2021, , 974 - 983, 30.08.2021
https://doi.org/10.16984/saufenbilder.845515

Abstract

References

  • Di Paola, C., Zhang, S., Zhao, K., Ying, Z., Bolin, T., Pedersen, G. F., Wideband Beam-Switchable 28 GHz Quasi-Yagi Array for Mobile Devices, IEEE Transactions on Antennas and Propagation, 67(11), 6870-6882, 2019.
  • Zhang, J., Ge, X., Li, Q., Guizani, M., Zhang, Y., 5G millimeter-wave antenna array: Design and challenges. IEEE Wireless Communications, 24(2), 106-112, 2016.
  • Ramos, A., Varum, T., Matos, J., Compact Multilayer Yagi-Uda Based Antenna for IoT/5G Sensors. Sensors, 18(9), 2914.,2018.
  • Sanam, N., Madhav, B. T. P., Rao, M. V., Nekkanti, V. S. K., Pulicherla, V. K., Chintapalli, T., Yadlavalli, A. P. A Flag-like MIMO Antenna Design for Wireless and IoT Applications.
  • Hassan, S. A., Samsuzzaman, M., Hossain, M. J., Akhtaruzzaman, M., Islam, T., Compact planar UWB antenna with 3.5/5.8 GHz dual band-notched characteristics for IoT applications. In 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), 195-199, 2017.
  • Das, S. V., Shanmuganantham, T. Design of multiband microstrip patch antenna for IoT applications. In 2017 IEEE International Conference on Circuits and Systems (ICCS), 87-92, 2017.
  • Allam, V. K., Madhav, B. T. P., Anilkumar, T., Maloji, S. A Novel Reconfigurable Bandpass Filtering Antenna for IoT Communication Applications. Progress In Electromagnetics Research, 96, 13-26, 2019.
  • Satheesh, A., Chandrababu, R., Rao, I. S. A compact antenna for IoT applications. In 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 1-4,2017.
  • Aggarwal, I., Tripathy, M. R., Pandey, S. Metamaterial inspired multiband slotted antenna for application in IoT band. In 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 1-4, 2016.
  • Raad, H. K., An UWB Antenna Array for Flexible IoT Wireless Systems. Progress In Electromagnetics Research, 162, 109-121,2018.
  • Hanaoui, M., & Rifi, M. Elliptical Slot Rectangular Patch Antenna Array with Dual Band Behaviour for Future 5G Wireless Communication Networks. In 2019 7th Mediterranean Congress of Telecommunications ,1-4, 2019.
  • Khattak, M. I., Sohail, A., Khan, U., Barki, Z., Witjaksono, G. Elliptical slot circular patch antenna array with dual band behavior for future 5G mobile communication networks. Progress In Electromagnetics Research, 89, 133-147,2019.
  • Kumar, A. S., Cheriyan, R., Ansal, K. A., Jose, D. S. Metamaterial Inspired CPW Fed Multiband Antenna for IOT Applications.
  • Yang, S. J., Pan, Y. M., Zhang, Y., Gao, Y., Zhang, X. Y. Low-Profile Dual-Polarized Filtering Magneto-Electric Dipole Antenna for 5G Applications. IEEE Transactions on Antennas and Propagation, 67(10), 6235-6243,2019.
  • Yin, J., Wu, Q., Yu, C., Wang, H.,Hong, W. Broadband Symmetrical E-Shaped Patch Antenna with Multimode Resonance for 5G Millimeter-Wave Applications. IEEE Transactions on Antennas and Propagation. 2019.
  • Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C.,Zhang, J. C. What will 5G be? IEEE Journal on selected areas in communications, 32(6), 1065-1082, 2014.
  • Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE access, 1, 335-349, 2013.
  • Wang, C. X., Haider, F., Gao, X., You, X. H., Yang, Y., Yuan, D., Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks. IEEE communications magazine, 52(2), 122-130, 2014.
  • Loss, C., Gonçalves, R., Lopes, C., Pinho, P., Salvado, R. Smart coat with a fully-embedded textile antenna for IoT applications. Sensors, 16(6), 938,2016.
  • Kuribayashi-Shigetomi, K., Onoe, H., Takeuchi, S. Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force. PloS one, 7(12), 2012.
  • Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R., Vaziri, A. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Scientific reports, 7(1), 1-9, 2017.
  • Overvelde, J. T., De Jong, T. A., Shevchenko, Y., Becerra, S. A., Whitesides, G. M., Weaver, J. C., Bertoldi, K. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. Nature communications, 7(1), 1-8,2016.
  • Veneziano, R., Moyer, T. J., Stone, M. B., Shepherd, T. R., Schief, W. R., Irvine, D. J., Bathe, M. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. 2020.
  • Wickeler, A. L., Naguib, H. E. Novel origami-inspired metamaterials: Design, mechanical testing and finite element modelling, Materials & Design, 186, 108242,2020.
  • Lu, Q., Clark, A. B., Shen, M.,Rojas, N. An Origami-Inspired Variable Friction Surface for Increasing the Dexterity of Robotic Grippers, IEEE Robotics and Automation Letters, 2020.
  • Deleo, A. A., O’Neil, J., Yasuda, H., Salviato, M.,Yang, J., Origami-based deployable structures made of carbon fiber reinforced polymer composites, Composites Science and Technology, 108060, 2020.
  • Chaudhari, S. Design and Development of Reconfigurable Origami Antennas Based on E-textile Embroidery (Doctoral dissertation, The Ohio State University). 2018.
  • Xu, Ying, Yeonju Kim, Manos M. Tentzeris, and Sungjoon Lim. "Bi-Directional Loop Antenna Array Using Magic Cube Origami. Sensors. 2019.
  • Shah, S. I. H., Tentzeris, M. M., Lim, S., A deployable quasi-Yagi monopole antenna using three origami magic spiral cubes. IEEE Antennas and Wireless Propagation Letters, 18(1), 147-151,2018.
  • Shah, Syed Imran Hussain, and Sungjoon Lim. Bioinspired DNA Origami Quasi-Yagi Helical Antenna with Beam Direction and Beam width Switching Capability., Scientific Reports, 1-9, 2019.
  • Utayo, M., Sangthongngam, W., Kittiyanpunya, C., Krairiksh, M. Pattern and frequency reconfigurable meander line Yagi-Uda antenna, International Conference on Advanced Technologies for Communications (ATC), 56-58, 2015.
  • Georgakopoulos, S. V., Reconfigurable Origami Antennas, International Applied Computational Electromagnetics Society Symposium (ACES),1-2, 2019.
  • Russo, N. E., Zekios, C. L., Georgakopoulos, S. V. Capacity Reconfigurable Origami Enabled MIMO Antenna, United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 1-2,2019.
  • Wang, L. C., Song, W. L., Zhang, Y. J., Qu, M. J., Zhao, Z., Chen, M., Fang, D. Active Reconfigurable Tristable Square‐Twist Origami. Advanced Functional Materials, 1909087, 2020.
  • Carrara, G. P., Russo, N. E., Zekios, C. L., Georgakopoulos, S. V. A Deployable and Reconfigurable Origami Antenna for Extended Mobile Range. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 453-454, 2019.
  • Khan, M. R., Zekios, C. L., Bhardwaj, S., Georgakopoulos, S. V. Origami-Enabled Frequency Reconfigurable Dipole Antenna. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (pp. 901-902, 2019.
  • Khan, M. R., Zekios, C. L., Georgakopoulos, S. V., Bhardwaj, S. Automated CAD and Modeling of Origami Structures for Reconfigurable Antenna Applications. In 2019 International Applied Computational Electromagnetics Society Symposium (ACES) 1-2, 2019.
  • Zekios, C. L., Liu, X., Moshtaghzadeh, M., Izadpanahi, E., Radnezhad, H. R., Mardanpour, P., Georgakopoulos, S. V. Electromagnetic and mechanical analysis of an origami helical antenna encapsulated by fabric. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2019.
  • Xu, Y., Kim, Y., Tentzeris, M. M., Lim, S. Bi-Directional Loop Antenna Array Using Magic Cube Origami. Sensors, 19(18), 3911, 2019.
  • Cicchetti, R., Miozzi, E., Testa, O. Wideband and UWB antennas for wireless applications: A comprehensive review. International Journal of Antennas and Propagation, 2017.
  • Valderas, D., Legarda, J., Gutiérrez, I., Sancho, J. I. Design of UWB folded-plate monopole antennas based on TLM. IEEE Transactions on Antennas and Propagation, 54(6), 1676-1687, 2006.
  • Perotoni, M. B., Costa, J., Enjiu, R. UWB (Ultra-wide band) accordion shaped planar monopole antenna. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) 1-4, 2015.
  • Shen, Y., Pang, Y., Wang, J., Ma, H., Pei, Z., Qu, S. Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption. Journal of Physics D: Applied Physics, 48(44), 445008, 2015.
  • Mustaqim, M., Khawaja, B. A., Chattha, H. T., Shafique, K., Zafar, M. J., Jamil, M. Ultra‐wideband antenna for wearable Internet of Things devices and wireless body area network applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32(6), e2590, 2019.
  • Goswami, P. K., Goswami, G. Truncated T parasite staircase fractal U‐slot antenna for multiple advance internet of things applications. Microwave and Optical Technology Letters, 62(2), 830-838, 2020.
  • Lin, X., Chen, Y., Gong, Z., Seet, B. C., Huang, L., Lu, Y. Ultra-Wideband Textile Antenna for Wearable Microwave Medical Imaging Applications. IEEE Transactions on Antennas and Propagation. 2020.
  • Loss, C., Gonçalves, R., Pinho, P., Salvado, R. A Review of Methods for the Electromagnetic Characterization of Textile Materials for the Development of Wearable Antennas. Wireless Power Transmission for Sustainable Electronics, 27-56, 2020.
  • Muneer, B., Shaikh, F. K., Zhu, Z. Antennas for IoT Application: An RF and Microwave Aspect of IoT. In IoT Architectures, Models, and Platforms for Smart City Applications 180-192, 2020.
  • Banu, M. A., Tamilselvi, R., Rajalakshmi, M.,Lakshmi, M. P. IoT-based Wearable Micro-Strip Patch Antenna with Electromagnetic Band Gap Structure for Gain Enhancement. In Inventive Communication and Computational Technologies 1379-1396, 2020.
  • Jiang, Y. Combination of wearable sensors and internet of things and its application in sports rehabilitation. Computer Communications, 150, 167-176, 2020.
  • Ashyap, A. Y., Dahlan, S. H. B., Abidin, Z. Z., Abbasi, M. I., Kamarudin, M. R., Majid, H. A., Alomainy, A. An Overview of Electromagnetic Band-Gap Integrated Wearable Antennas. IEEE Access, 8, 7641-7658, 2020.
  • Corchia, L., Monti, G., De Benedetto, E., Cataldo, A., Angrisani, L., Arpaia, P., Tarricone, L. Fully-Textile, Wearable Chipless Tags for Identification and Tracking Applications. Sensors, 20(2), 429, 2020.
  • Kumar, N., Khanna, R., A compact multi‐band multi‐input multi‐output antenna for 4G/5G and IoT devices using theory of characteristic modes. International Journal of RF and Microwave Computer‐Aided Engineering, 30(1), e22012, 2020.
  • Esmail, B. A., Majid, H. B., Dahlan, S. H., Abidin, Z. Z., Rahim, M. K., Jusoh, M., Planar antenna beam deflection using low‐loss metamaterial for future 5G applications. International Journal of RF and Microwave Computer‐Aided Engineering, 29(10), e21867, 2019.
  • Saxena, S., Kanaujia, B. K., Dwari, S., Kumar, S., Tiwari, R. MIMO antenna with built-in circular shaped isolator for sub-6 GHz 5G applications. Electronics letters, 54(8), 478-480, 2018.
  • Belikaidis, I. P., Georgakopoulos, A., Kosmatos, E., Frascolla, V., Demestichas, P. Management of 3.5-GHz spectrum in 5G dense networks: A hierarchical radio resource management scheme. IEEE Vehicular Technology Magazine, 13(2), 57-64, 2018.
  • Vaghefi, R. M., Palat, R. C., Marzin, G., Basavaraju, K., Feng, Y., Banu, M. Achieving Phase Coherency and Gain Stability in Active Antenna Arrays for Sub-6 GHz FDD and TDD FD-MIMO: Challenges and Solutions, 2019.
  • Amjad, Q., Kamran, A., Tariq, F., Karim, R., Design and Characterization of a Slot based Patch Antenna for Sub-6 GHz 5G Applications. Second International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT) 1-6, 2019.
  • Antenna Magus. Available: http://www.antennamagus.com
  • CST MWS (Computer Simulation Technology Microwave Studio Suite).

Investigation of Origami Inspired Sub-6 GHz Accordion Monopole Antenna for 5G Applications

Year 2021, , 974 - 983, 30.08.2021
https://doi.org/10.16984/saufenbilder.845515

Abstract

This study presents an origami inspired sub-6 GHz accordion monopole antenna for 5G applications. Parametric study is performed by varying monopole height, fold width and bevel angle to examine the antenna performance in the 1 GHz - 6 GHz frequency range. The proposed antenna is designed with the values that yield the best performance in accordance with the results of parametric study. Antenna behavior is then evaluated in terms of Return Loss, gain and radiation pattern. The proposed antenna operates in 1.22 GHz - 6 GHz frequency range which covers almost the entire sub-6 GHz range with an approximate impedance bandwidth of 132%. Hence, the designed antenna structure has a good performance in the sub-6 GHz and it is a promising design for 5G applications.

References

  • Di Paola, C., Zhang, S., Zhao, K., Ying, Z., Bolin, T., Pedersen, G. F., Wideband Beam-Switchable 28 GHz Quasi-Yagi Array for Mobile Devices, IEEE Transactions on Antennas and Propagation, 67(11), 6870-6882, 2019.
  • Zhang, J., Ge, X., Li, Q., Guizani, M., Zhang, Y., 5G millimeter-wave antenna array: Design and challenges. IEEE Wireless Communications, 24(2), 106-112, 2016.
  • Ramos, A., Varum, T., Matos, J., Compact Multilayer Yagi-Uda Based Antenna for IoT/5G Sensors. Sensors, 18(9), 2914.,2018.
  • Sanam, N., Madhav, B. T. P., Rao, M. V., Nekkanti, V. S. K., Pulicherla, V. K., Chintapalli, T., Yadlavalli, A. P. A Flag-like MIMO Antenna Design for Wireless and IoT Applications.
  • Hassan, S. A., Samsuzzaman, M., Hossain, M. J., Akhtaruzzaman, M., Islam, T., Compact planar UWB antenna with 3.5/5.8 GHz dual band-notched characteristics for IoT applications. In 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), 195-199, 2017.
  • Das, S. V., Shanmuganantham, T. Design of multiband microstrip patch antenna for IoT applications. In 2017 IEEE International Conference on Circuits and Systems (ICCS), 87-92, 2017.
  • Allam, V. K., Madhav, B. T. P., Anilkumar, T., Maloji, S. A Novel Reconfigurable Bandpass Filtering Antenna for IoT Communication Applications. Progress In Electromagnetics Research, 96, 13-26, 2019.
  • Satheesh, A., Chandrababu, R., Rao, I. S. A compact antenna for IoT applications. In 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 1-4,2017.
  • Aggarwal, I., Tripathy, M. R., Pandey, S. Metamaterial inspired multiband slotted antenna for application in IoT band. In 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 1-4, 2016.
  • Raad, H. K., An UWB Antenna Array for Flexible IoT Wireless Systems. Progress In Electromagnetics Research, 162, 109-121,2018.
  • Hanaoui, M., & Rifi, M. Elliptical Slot Rectangular Patch Antenna Array with Dual Band Behaviour for Future 5G Wireless Communication Networks. In 2019 7th Mediterranean Congress of Telecommunications ,1-4, 2019.
  • Khattak, M. I., Sohail, A., Khan, U., Barki, Z., Witjaksono, G. Elliptical slot circular patch antenna array with dual band behavior for future 5G mobile communication networks. Progress In Electromagnetics Research, 89, 133-147,2019.
  • Kumar, A. S., Cheriyan, R., Ansal, K. A., Jose, D. S. Metamaterial Inspired CPW Fed Multiband Antenna for IOT Applications.
  • Yang, S. J., Pan, Y. M., Zhang, Y., Gao, Y., Zhang, X. Y. Low-Profile Dual-Polarized Filtering Magneto-Electric Dipole Antenna for 5G Applications. IEEE Transactions on Antennas and Propagation, 67(10), 6235-6243,2019.
  • Yin, J., Wu, Q., Yu, C., Wang, H.,Hong, W. Broadband Symmetrical E-Shaped Patch Antenna with Multimode Resonance for 5G Millimeter-Wave Applications. IEEE Transactions on Antennas and Propagation. 2019.
  • Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C.,Zhang, J. C. What will 5G be? IEEE Journal on selected areas in communications, 32(6), 1065-1082, 2014.
  • Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE access, 1, 335-349, 2013.
  • Wang, C. X., Haider, F., Gao, X., You, X. H., Yang, Y., Yuan, D., Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks. IEEE communications magazine, 52(2), 122-130, 2014.
  • Loss, C., Gonçalves, R., Lopes, C., Pinho, P., Salvado, R. Smart coat with a fully-embedded textile antenna for IoT applications. Sensors, 16(6), 938,2016.
  • Kuribayashi-Shigetomi, K., Onoe, H., Takeuchi, S. Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force. PloS one, 7(12), 2012.
  • Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R., Vaziri, A. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Scientific reports, 7(1), 1-9, 2017.
  • Overvelde, J. T., De Jong, T. A., Shevchenko, Y., Becerra, S. A., Whitesides, G. M., Weaver, J. C., Bertoldi, K. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. Nature communications, 7(1), 1-8,2016.
  • Veneziano, R., Moyer, T. J., Stone, M. B., Shepherd, T. R., Schief, W. R., Irvine, D. J., Bathe, M. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. 2020.
  • Wickeler, A. L., Naguib, H. E. Novel origami-inspired metamaterials: Design, mechanical testing and finite element modelling, Materials & Design, 186, 108242,2020.
  • Lu, Q., Clark, A. B., Shen, M.,Rojas, N. An Origami-Inspired Variable Friction Surface for Increasing the Dexterity of Robotic Grippers, IEEE Robotics and Automation Letters, 2020.
  • Deleo, A. A., O’Neil, J., Yasuda, H., Salviato, M.,Yang, J., Origami-based deployable structures made of carbon fiber reinforced polymer composites, Composites Science and Technology, 108060, 2020.
  • Chaudhari, S. Design and Development of Reconfigurable Origami Antennas Based on E-textile Embroidery (Doctoral dissertation, The Ohio State University). 2018.
  • Xu, Ying, Yeonju Kim, Manos M. Tentzeris, and Sungjoon Lim. "Bi-Directional Loop Antenna Array Using Magic Cube Origami. Sensors. 2019.
  • Shah, S. I. H., Tentzeris, M. M., Lim, S., A deployable quasi-Yagi monopole antenna using three origami magic spiral cubes. IEEE Antennas and Wireless Propagation Letters, 18(1), 147-151,2018.
  • Shah, Syed Imran Hussain, and Sungjoon Lim. Bioinspired DNA Origami Quasi-Yagi Helical Antenna with Beam Direction and Beam width Switching Capability., Scientific Reports, 1-9, 2019.
  • Utayo, M., Sangthongngam, W., Kittiyanpunya, C., Krairiksh, M. Pattern and frequency reconfigurable meander line Yagi-Uda antenna, International Conference on Advanced Technologies for Communications (ATC), 56-58, 2015.
  • Georgakopoulos, S. V., Reconfigurable Origami Antennas, International Applied Computational Electromagnetics Society Symposium (ACES),1-2, 2019.
  • Russo, N. E., Zekios, C. L., Georgakopoulos, S. V. Capacity Reconfigurable Origami Enabled MIMO Antenna, United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 1-2,2019.
  • Wang, L. C., Song, W. L., Zhang, Y. J., Qu, M. J., Zhao, Z., Chen, M., Fang, D. Active Reconfigurable Tristable Square‐Twist Origami. Advanced Functional Materials, 1909087, 2020.
  • Carrara, G. P., Russo, N. E., Zekios, C. L., Georgakopoulos, S. V. A Deployable and Reconfigurable Origami Antenna for Extended Mobile Range. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 453-454, 2019.
  • Khan, M. R., Zekios, C. L., Bhardwaj, S., Georgakopoulos, S. V. Origami-Enabled Frequency Reconfigurable Dipole Antenna. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (pp. 901-902, 2019.
  • Khan, M. R., Zekios, C. L., Georgakopoulos, S. V., Bhardwaj, S. Automated CAD and Modeling of Origami Structures for Reconfigurable Antenna Applications. In 2019 International Applied Computational Electromagnetics Society Symposium (ACES) 1-2, 2019.
  • Zekios, C. L., Liu, X., Moshtaghzadeh, M., Izadpanahi, E., Radnezhad, H. R., Mardanpour, P., Georgakopoulos, S. V. Electromagnetic and mechanical analysis of an origami helical antenna encapsulated by fabric. ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2019.
  • Xu, Y., Kim, Y., Tentzeris, M. M., Lim, S. Bi-Directional Loop Antenna Array Using Magic Cube Origami. Sensors, 19(18), 3911, 2019.
  • Cicchetti, R., Miozzi, E., Testa, O. Wideband and UWB antennas for wireless applications: A comprehensive review. International Journal of Antennas and Propagation, 2017.
  • Valderas, D., Legarda, J., Gutiérrez, I., Sancho, J. I. Design of UWB folded-plate monopole antennas based on TLM. IEEE Transactions on Antennas and Propagation, 54(6), 1676-1687, 2006.
  • Perotoni, M. B., Costa, J., Enjiu, R. UWB (Ultra-wide band) accordion shaped planar monopole antenna. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) 1-4, 2015.
  • Shen, Y., Pang, Y., Wang, J., Ma, H., Pei, Z., Qu, S. Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption. Journal of Physics D: Applied Physics, 48(44), 445008, 2015.
  • Mustaqim, M., Khawaja, B. A., Chattha, H. T., Shafique, K., Zafar, M. J., Jamil, M. Ultra‐wideband antenna for wearable Internet of Things devices and wireless body area network applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32(6), e2590, 2019.
  • Goswami, P. K., Goswami, G. Truncated T parasite staircase fractal U‐slot antenna for multiple advance internet of things applications. Microwave and Optical Technology Letters, 62(2), 830-838, 2020.
  • Lin, X., Chen, Y., Gong, Z., Seet, B. C., Huang, L., Lu, Y. Ultra-Wideband Textile Antenna for Wearable Microwave Medical Imaging Applications. IEEE Transactions on Antennas and Propagation. 2020.
  • Loss, C., Gonçalves, R., Pinho, P., Salvado, R. A Review of Methods for the Electromagnetic Characterization of Textile Materials for the Development of Wearable Antennas. Wireless Power Transmission for Sustainable Electronics, 27-56, 2020.
  • Muneer, B., Shaikh, F. K., Zhu, Z. Antennas for IoT Application: An RF and Microwave Aspect of IoT. In IoT Architectures, Models, and Platforms for Smart City Applications 180-192, 2020.
  • Banu, M. A., Tamilselvi, R., Rajalakshmi, M.,Lakshmi, M. P. IoT-based Wearable Micro-Strip Patch Antenna with Electromagnetic Band Gap Structure for Gain Enhancement. In Inventive Communication and Computational Technologies 1379-1396, 2020.
  • Jiang, Y. Combination of wearable sensors and internet of things and its application in sports rehabilitation. Computer Communications, 150, 167-176, 2020.
  • Ashyap, A. Y., Dahlan, S. H. B., Abidin, Z. Z., Abbasi, M. I., Kamarudin, M. R., Majid, H. A., Alomainy, A. An Overview of Electromagnetic Band-Gap Integrated Wearable Antennas. IEEE Access, 8, 7641-7658, 2020.
  • Corchia, L., Monti, G., De Benedetto, E., Cataldo, A., Angrisani, L., Arpaia, P., Tarricone, L. Fully-Textile, Wearable Chipless Tags for Identification and Tracking Applications. Sensors, 20(2), 429, 2020.
  • Kumar, N., Khanna, R., A compact multi‐band multi‐input multi‐output antenna for 4G/5G and IoT devices using theory of characteristic modes. International Journal of RF and Microwave Computer‐Aided Engineering, 30(1), e22012, 2020.
  • Esmail, B. A., Majid, H. B., Dahlan, S. H., Abidin, Z. Z., Rahim, M. K., Jusoh, M., Planar antenna beam deflection using low‐loss metamaterial for future 5G applications. International Journal of RF and Microwave Computer‐Aided Engineering, 29(10), e21867, 2019.
  • Saxena, S., Kanaujia, B. K., Dwari, S., Kumar, S., Tiwari, R. MIMO antenna with built-in circular shaped isolator for sub-6 GHz 5G applications. Electronics letters, 54(8), 478-480, 2018.
  • Belikaidis, I. P., Georgakopoulos, A., Kosmatos, E., Frascolla, V., Demestichas, P. Management of 3.5-GHz spectrum in 5G dense networks: A hierarchical radio resource management scheme. IEEE Vehicular Technology Magazine, 13(2), 57-64, 2018.
  • Vaghefi, R. M., Palat, R. C., Marzin, G., Basavaraju, K., Feng, Y., Banu, M. Achieving Phase Coherency and Gain Stability in Active Antenna Arrays for Sub-6 GHz FDD and TDD FD-MIMO: Challenges and Solutions, 2019.
  • Amjad, Q., Kamran, A., Tariq, F., Karim, R., Design and Characterization of a Slot based Patch Antenna for Sub-6 GHz 5G Applications. Second International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT) 1-6, 2019.
  • Antenna Magus. Available: http://www.antennamagus.com
  • CST MWS (Computer Simulation Technology Microwave Studio Suite).
There are 60 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Duygu Nazan Gençoğlan 0000-0001-5014-9514

Şule Çolak 0000-0002-9529-4544

Publication Date August 30, 2021
Submission Date December 24, 2020
Acceptance Date June 27, 2021
Published in Issue Year 2021

Cite

APA Gençoğlan, D. N., & Çolak, Ş. (2021). Investigation of Origami Inspired Sub-6 GHz Accordion Monopole Antenna for 5G Applications. Sakarya University Journal of Science, 25(4), 974-983. https://doi.org/10.16984/saufenbilder.845515
AMA Gençoğlan DN, Çolak Ş. Investigation of Origami Inspired Sub-6 GHz Accordion Monopole Antenna for 5G Applications. SAUJS. August 2021;25(4):974-983. doi:10.16984/saufenbilder.845515
Chicago Gençoğlan, Duygu Nazan, and Şule Çolak. “Investigation of Origami Inspired Sub-6 GHz Accordion Monopole Antenna for 5G Applications”. Sakarya University Journal of Science 25, no. 4 (August 2021): 974-83. https://doi.org/10.16984/saufenbilder.845515.
EndNote Gençoğlan DN, Çolak Ş (August 1, 2021) Investigation of Origami Inspired Sub-6 GHz Accordion Monopole Antenna for 5G Applications. Sakarya University Journal of Science 25 4 974–983.
IEEE D. N. Gençoğlan and Ş. Çolak, “Investigation of Origami Inspired Sub-6 GHz Accordion Monopole Antenna for 5G Applications”, SAUJS, vol. 25, no. 4, pp. 974–983, 2021, doi: 10.16984/saufenbilder.845515.
ISNAD Gençoğlan, Duygu Nazan - Çolak, Şule. “Investigation of Origami Inspired Sub-6 GHz Accordion Monopole Antenna for 5G Applications”. Sakarya University Journal of Science 25/4 (August 2021), 974-983. https://doi.org/10.16984/saufenbilder.845515.
JAMA Gençoğlan DN, Çolak Ş. Investigation of Origami Inspired Sub-6 GHz Accordion Monopole Antenna for 5G Applications. SAUJS. 2021;25:974–983.
MLA Gençoğlan, Duygu Nazan and Şule Çolak. “Investigation of Origami Inspired Sub-6 GHz Accordion Monopole Antenna for 5G Applications”. Sakarya University Journal of Science, vol. 25, no. 4, 2021, pp. 974-83, doi:10.16984/saufenbilder.845515.
Vancouver Gençoğlan DN, Çolak Ş. Investigation of Origami Inspired Sub-6 GHz Accordion Monopole Antenna for 5G Applications. SAUJS. 2021;25(4):974-83.

Cited By

The Novel Monopole Antenna for Sub-6 GHz 5G Applications
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji
https://doi.org/10.29109/gujsc.1518514

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.