In an indoor multiple-input multiple-output (MIMO) visible light communication (VLC) system, line of sight (LoS) channel links are present between a light-emitting diode (LED) based transmitter and a photodetector (PD) based receiver. The PDs in the receiver are closely packed resulting in a high channel correlation. To overcome channel correlation and improve the performance of the MIMO-VLC system, angle diversity receivers (ADRs) are commonly employed. The channel matrix entries depend on the normal vectors of the PDs, which in turn depend on the elevation angle (EA) of the PDs. Thus, by having normal vectors pointing in different directions, the channel correlation can be considerably reduced. This paper considers a special type of ADR called pyramid receiver (PR) and employs a 4x4 MIMO-VLC system. In this paper, different MIMO algorithms such as repetition coding (RC) and spatial multiplexing (SMP) are considered to exhibit and compare the bit-error-rate (BER) performance of the fixed and variable EA MIMO-VLC systems. The results show that an SMP-employed MIMO-VLC system outperforms the RC-employed MIMO-VLC system. SMP results in an spatial multiplexing gain that varies linearly with the number of LEDs whereas RC does not yield any spatial multiplexing gain. To attain the same spectral efficiency i.e. 4 bit/s/Hz, a larger signal constellation size is required for RC employed MIMO-VLC system to achieve the same BER as of an SMP employed MIMO-VLC system. Similarly, the BER performance of variable EA MIMO-VLC systems is better as compared to fixed EA MIMO-VLC systems.
angle diversity receiver optical wireless communication pyramid receiver visible light communication
TUBİTAK
118E753.
118E753.
Primary Language | English |
---|---|
Subjects | Electrical Engineering |
Journal Section | Research Articles |
Authors | |
Project Number | 118E753. |
Publication Date | October 20, 2022 |
Submission Date | December 29, 2020 |
Acceptance Date | August 15, 2022 |
Published in Issue | Year 2022 |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.