Research Article
BibTex RIS Cite

An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene

Year 2021, , 714 - 722, 30.06.2021
https://doi.org/10.16984/saufenbilder.909041

Abstract

In this paper, a new efficient method for the synthesis of 2-bromo-3-(bromomethyl)naphthalene is reported. The synthesis is based on (1) preparation of 1,4-dihydronaphthalene via Birch reduction with mild conditions from the reaction of naphthalene, and (2) the reaction between 1,4-dihydronaphthalene and dichlorocarbene generated in situ from chloroform and t-BuOK, and (3) access to the key intermediate 1H-cyclopropa[b]naphthalene from the reaction of 1,1-dichloro-1a,2,7,7a-tetrahydro-1H-cyclopropa[b]naphthalene with t-BuOK, followed by ring-opening of the three-membered cyclopropane by bromination with molecular bromine (Br2). This synthetic sequence allows simple preparation of 2-bromo-3-(bromomethyl)naphthalene in higher yields compared to the two previously reported syntheses. The synthetic approach is modular, low cost, and rapid, and can be utilized to synthesize building blocks of naphthalene derivatives.

Thanks

The authors declare no conflict of interest. The author is greatly indebted to Prof. Dr. Arif DAŞTAN for providing use of all of his laboratory facilities throughout conducting the research.

References

  • [1] E. T. Akin, M. Erdogan, A. Dastan, and N. Saracoglu, “Access to polysubstituted naphthalenes and anthracenes via a retro-Diels–Alder reaction,” Tetrahedron, vol. 73, no. 37, pp. 5537-5546, 2017.
  • [2] K. Ohta, T. Goto, and Y. Endo, “1, 2-Dicarba-c loso-dodecaboran-1-yl Naphthalene Derivatives,” Inorganic Chemistry, vol. 44, no. 23, pp. 8569-8573, 2005.
  • [3] W. Mahabusarakam, C. Hemtasin, S. Chakthong, S. P. Voravuthikunchai, and I. B. Olawumi, “Naphthoquinones, anthraquinones and naphthalene derivatives from the bulbs of Eleutherine americana,” Planta Medica, vol. 76, no. 04, pp. 345-349, 2010.
  • [4] G. L. Cantrell, and R. Filler, “Synthesis of 1, 2, 3, 4-tetrafluoro-and 1, 2, 3, 4, 5, 6, 7, 8-octafluoroanthracenes via cycloaddition-reversion,” Journal of Fluorine Chemistry, vol. 29, no. 4, pp. 417-424, 1985.
  • [5] A. L. Fernandez, M. Granda, J. Bermejo, and R. Menendez, “Catalytic polymerization of anthracene oil with aluminium trichloride,” Carbon, vol. 37, no. 8, pp. 1247-1255, 1999.
  • [6] N. Saino, T. Kawaji, T. Ito, Y. Matsushita, and S. Okamoto, “Synthesis of substituted anthracenes, pentaphenes and trinaphthylenes via alkyne-cyclotrimerization reaction,” Tetrahedron Letters, vol. 51, no. 9, pp. 1313-1316, 2010.
  • [7] P. T. Lynett, and K. E. Maly, “Synthesis of substituted trinaphthylenes via aryne cyclotrimerization,” Organic Letters, vol. 11, no. 16, pp. 3726-3729, 2009.
  • [8] D. A. Petrone, J. Ye, and M. Lautens, “Modern transition-metal-catalyzed carbon–halogen bond formation,” Chemical Reviews, vol. 116, no. 14, pp. 8003-8104, 2016.
  • [9] D. Hoshino, and K. Mori, “Rapid access to 3-indolyl-1-trifluoromethyl-isobenzofurans by hybrid use of Lewis/Brønsted acid catalysts,” Organic & Biomolecular Chemistry, vol. 18, no. 34, pp. 6602-6606, 2020.
  • [10] H. Taneda, K. Inamoto, and Y. Kondo, “Palladium-Catalyzed Highly Chemoselective Intramolecular C–H Aminocarbonylation of Phenethylamines to Six-Membered Benzolactams,” Organic Letters, vol. 18, no. 11, pp. 2712-2715, 2016.
  • [11] R. do Carmo Pinheiro, D. F. Back, and G. Zeni, “Iron (III) Chloride/Dialkyl Diselenides‐Promoted Cascade Cyclization of ortho‐Diynyl Benzyl Chalcogenides,” Advanced Synthesis & Catalysis, vol. 361, no. 8, pp. 1866-1873, 2019.
  • [12] R. Dorel, P. R. McGonigal, and A. M. Echavarren, “Hydroacenes made easy by gold (I) catalysis,” Angewandte Chemie, vol. 128, no. 37, pp. 11286-11289, 2016.
  • [13] B. Cui, J. Shan, C. Yuan, W. Han, N. Wan, and Y. Chen, “Synthesis of 2, 3′-spirobi [indolin]-2-ones enabled by a tandem nucleophilic benzylation/C (sp 2)–N cross-coupling reaction sequence,” Organic & Biomolecular Chemistry, vol. 15, no. 28, pp. 5887-5892, 2017.
  • [14] R. A. Pascal Jr, A. Dudnikov, L. A. Love, X. Geng, K. J. Dougherty, J. T. Mague, and N. Byrne, “Chiral Polyaryl Cyclophanes,” European Journal of Organic Chemistry, vol. 28, pp. 4194-4200, 2017.
  • [15] R. Kotani, L. Liu, P. Kumar, H. Kuramochi, T. Tahara, P. Liu, and S. Saito, “Controlling the S1 Energy Profile by Tuning Excited-State Aromaticity,” Journal of the American Chemical Society, vol. 142, no. 35, pp. 14985-14992, 2020.
  • [16] J. G. Smith, P. W. Dibble, and R. E. Sandborn, “The preparation and reactions of naphtho [1, 2-c] furan and naphtho [2, 3-c] furan,” Journal of Organic Chemistry, vol. 51, no. 20, pp. 3762-3768, 1986.
  • [17] L. P. Mangin, and D. Zargarian, “C–H Nickelation of Naphthyl Phosphinites: Electronic and Steric Limitations, Regioselectivity, and Tandem C–P Functionalization,” Organometallics, vol. 38, no. 24, pp. 4687-4700, 2019.
  • [18] W. Zhang, and J. M. Ready, “The Ketene‐Surrogate Coupling: Catalytic Conversion of Aryl Iodides into Aryl Ketenes through Ynol Ethers,” Angewandte Chemie, vol. 126, no. 34, pp. 9126-9130, 2014.
  • [19] S. Kancherla, and K. B. Jørgensen, “Synthesis of Phenacene–Helicene Hybrids by Directed Remote Metalation,” Journal of Organic Chemistry, vol. 85, no. 17, pp. 11140-11153, 2020.
  • [20] S. H. Han, A. K. Pandey, H. Lee, S. Kim, D. Kang, Y. H. Jung, and I. S. Kim, “One-pot synthesis of 2-naphthols from nitrones and MBH adducts via decarboxylative N–O bond cleavage,” Organic Chemistry Frontiers, vol. 5, no. 22, pp. 3210-3218, 2018.
  • [21] E. Ghera, and Y. Ben-David, “Annulation reactions leading to naphthalene derivatives. New syntheses of natural 1, 2-and 1, 4-naphthoquinones,” Journal of Organic Chemistry, vol. 50, no. 18, pp. 3355-3359, 1985.
  • [22] M. G. Rong, T. Z. Qin, X. R. Liu, H. F. Wang, and W. Zi, “De Novo Synthesis of Phenols and Naphthols through Oxidative Cycloaromatization of Dienynes,” Organic Letters, vol. 20, no. 19, pp. 6289-6293, 2018.
  • [23] L. P. Mangin, and D. Zargarian, “C–H Nickelation of Naphthyl Phosphinites: Electronic and Steric Limitations, Regioselectivity, and Tandem C–P Functionalization,” Organometallics, vol. 38, no. 24, pp. 4687-4700, 2019.
  • [24] D. Davalian, P. J. Garratt, W. Koller, M. M. Mansuri, “Strained aromatic systems. Synthesis of cyclopropabenzocyclobutenes, cyclopropanaphthocylobutenes, and related compounds,” Journal of Organic Chemistry, vol. 45, no. 21, pp. 4183-4193, 1980.
  • [25] R. Okazaki, M. Ooka, N. Tokitoh, and N. Inamoto, “Synthesis and reactions of 1, 6-dithiocyanato-and 1, 6-diiodo-1, 3, 5-cycloheptatrienes,” Journal of Organic Chemistry, vol. 50 no. 2, pp. 180-185, 1985.
  • [26] W. E. Billups, and W. A. Rodin, “Regioselective ring opening in annelated benzocyclopropenes,” Journal of Organic Chemistry, vol. 53, no. 6, pp. 1312-1314, 1988.
  • [27] B, Halton, C. S. Jones, A. J. Kay, D. Margetic, and S. Sretenovic, “Studies in the cycloproparene series: chemistry of 1H-cyclopropa [b] naphthalene-3, 6-dione and its transformation into 1 H-cyclopropa [b] anthracene-3, 8-dione 1,” Journal of the Chemical Society, Perkin Transactions, vol. 1 no. 14, pp. 2205-2210, 2000.
  • [28] A. Menzek, A. Altundas, and D. Gueltekin, “A new, safe and convenient procedure for reduction of naphthalene and anthracene: synthesis of tetralin in a one-pot reaction,” Journal of Chemical Research, vol. 2003, no. 11, pp. 752-753, 2003.
  • [29] D. P. Kelly, M. G. Banwell, N. K. Ireland, and A. L. Noel, “Proton-carbon-13 coupling constants in carbocations. 6. Generation and trapping of the (1a. alpha., 7a. alpha.)-1a, 2, 7, 7a-tetrahydro-1H-cyclopropa [b] naphthalen-2-yl cation,” Journal of Organic Chemistry, vol. 56, no. 6, pp. 2040-2045, 1991.
  • [30] W. E. Billups, and W. Y. Chow, “Naphtho [b] cyclopropene,” Journal of the American Chemical Society, vol. 95, no. 12, pp. 4099-4100, 1973.
  • [31] F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo-and naphthoporphyrin complexes,” Inorganic Chemistry, vol. 49, no. 20, pp. 9333-9342, 2010.
Year 2021, , 714 - 722, 30.06.2021
https://doi.org/10.16984/saufenbilder.909041

Abstract

References

  • [1] E. T. Akin, M. Erdogan, A. Dastan, and N. Saracoglu, “Access to polysubstituted naphthalenes and anthracenes via a retro-Diels–Alder reaction,” Tetrahedron, vol. 73, no. 37, pp. 5537-5546, 2017.
  • [2] K. Ohta, T. Goto, and Y. Endo, “1, 2-Dicarba-c loso-dodecaboran-1-yl Naphthalene Derivatives,” Inorganic Chemistry, vol. 44, no. 23, pp. 8569-8573, 2005.
  • [3] W. Mahabusarakam, C. Hemtasin, S. Chakthong, S. P. Voravuthikunchai, and I. B. Olawumi, “Naphthoquinones, anthraquinones and naphthalene derivatives from the bulbs of Eleutherine americana,” Planta Medica, vol. 76, no. 04, pp. 345-349, 2010.
  • [4] G. L. Cantrell, and R. Filler, “Synthesis of 1, 2, 3, 4-tetrafluoro-and 1, 2, 3, 4, 5, 6, 7, 8-octafluoroanthracenes via cycloaddition-reversion,” Journal of Fluorine Chemistry, vol. 29, no. 4, pp. 417-424, 1985.
  • [5] A. L. Fernandez, M. Granda, J. Bermejo, and R. Menendez, “Catalytic polymerization of anthracene oil with aluminium trichloride,” Carbon, vol. 37, no. 8, pp. 1247-1255, 1999.
  • [6] N. Saino, T. Kawaji, T. Ito, Y. Matsushita, and S. Okamoto, “Synthesis of substituted anthracenes, pentaphenes and trinaphthylenes via alkyne-cyclotrimerization reaction,” Tetrahedron Letters, vol. 51, no. 9, pp. 1313-1316, 2010.
  • [7] P. T. Lynett, and K. E. Maly, “Synthesis of substituted trinaphthylenes via aryne cyclotrimerization,” Organic Letters, vol. 11, no. 16, pp. 3726-3729, 2009.
  • [8] D. A. Petrone, J. Ye, and M. Lautens, “Modern transition-metal-catalyzed carbon–halogen bond formation,” Chemical Reviews, vol. 116, no. 14, pp. 8003-8104, 2016.
  • [9] D. Hoshino, and K. Mori, “Rapid access to 3-indolyl-1-trifluoromethyl-isobenzofurans by hybrid use of Lewis/Brønsted acid catalysts,” Organic & Biomolecular Chemistry, vol. 18, no. 34, pp. 6602-6606, 2020.
  • [10] H. Taneda, K. Inamoto, and Y. Kondo, “Palladium-Catalyzed Highly Chemoselective Intramolecular C–H Aminocarbonylation of Phenethylamines to Six-Membered Benzolactams,” Organic Letters, vol. 18, no. 11, pp. 2712-2715, 2016.
  • [11] R. do Carmo Pinheiro, D. F. Back, and G. Zeni, “Iron (III) Chloride/Dialkyl Diselenides‐Promoted Cascade Cyclization of ortho‐Diynyl Benzyl Chalcogenides,” Advanced Synthesis & Catalysis, vol. 361, no. 8, pp. 1866-1873, 2019.
  • [12] R. Dorel, P. R. McGonigal, and A. M. Echavarren, “Hydroacenes made easy by gold (I) catalysis,” Angewandte Chemie, vol. 128, no. 37, pp. 11286-11289, 2016.
  • [13] B. Cui, J. Shan, C. Yuan, W. Han, N. Wan, and Y. Chen, “Synthesis of 2, 3′-spirobi [indolin]-2-ones enabled by a tandem nucleophilic benzylation/C (sp 2)–N cross-coupling reaction sequence,” Organic & Biomolecular Chemistry, vol. 15, no. 28, pp. 5887-5892, 2017.
  • [14] R. A. Pascal Jr, A. Dudnikov, L. A. Love, X. Geng, K. J. Dougherty, J. T. Mague, and N. Byrne, “Chiral Polyaryl Cyclophanes,” European Journal of Organic Chemistry, vol. 28, pp. 4194-4200, 2017.
  • [15] R. Kotani, L. Liu, P. Kumar, H. Kuramochi, T. Tahara, P. Liu, and S. Saito, “Controlling the S1 Energy Profile by Tuning Excited-State Aromaticity,” Journal of the American Chemical Society, vol. 142, no. 35, pp. 14985-14992, 2020.
  • [16] J. G. Smith, P. W. Dibble, and R. E. Sandborn, “The preparation and reactions of naphtho [1, 2-c] furan and naphtho [2, 3-c] furan,” Journal of Organic Chemistry, vol. 51, no. 20, pp. 3762-3768, 1986.
  • [17] L. P. Mangin, and D. Zargarian, “C–H Nickelation of Naphthyl Phosphinites: Electronic and Steric Limitations, Regioselectivity, and Tandem C–P Functionalization,” Organometallics, vol. 38, no. 24, pp. 4687-4700, 2019.
  • [18] W. Zhang, and J. M. Ready, “The Ketene‐Surrogate Coupling: Catalytic Conversion of Aryl Iodides into Aryl Ketenes through Ynol Ethers,” Angewandte Chemie, vol. 126, no. 34, pp. 9126-9130, 2014.
  • [19] S. Kancherla, and K. B. Jørgensen, “Synthesis of Phenacene–Helicene Hybrids by Directed Remote Metalation,” Journal of Organic Chemistry, vol. 85, no. 17, pp. 11140-11153, 2020.
  • [20] S. H. Han, A. K. Pandey, H. Lee, S. Kim, D. Kang, Y. H. Jung, and I. S. Kim, “One-pot synthesis of 2-naphthols from nitrones and MBH adducts via decarboxylative N–O bond cleavage,” Organic Chemistry Frontiers, vol. 5, no. 22, pp. 3210-3218, 2018.
  • [21] E. Ghera, and Y. Ben-David, “Annulation reactions leading to naphthalene derivatives. New syntheses of natural 1, 2-and 1, 4-naphthoquinones,” Journal of Organic Chemistry, vol. 50, no. 18, pp. 3355-3359, 1985.
  • [22] M. G. Rong, T. Z. Qin, X. R. Liu, H. F. Wang, and W. Zi, “De Novo Synthesis of Phenols and Naphthols through Oxidative Cycloaromatization of Dienynes,” Organic Letters, vol. 20, no. 19, pp. 6289-6293, 2018.
  • [23] L. P. Mangin, and D. Zargarian, “C–H Nickelation of Naphthyl Phosphinites: Electronic and Steric Limitations, Regioselectivity, and Tandem C–P Functionalization,” Organometallics, vol. 38, no. 24, pp. 4687-4700, 2019.
  • [24] D. Davalian, P. J. Garratt, W. Koller, M. M. Mansuri, “Strained aromatic systems. Synthesis of cyclopropabenzocyclobutenes, cyclopropanaphthocylobutenes, and related compounds,” Journal of Organic Chemistry, vol. 45, no. 21, pp. 4183-4193, 1980.
  • [25] R. Okazaki, M. Ooka, N. Tokitoh, and N. Inamoto, “Synthesis and reactions of 1, 6-dithiocyanato-and 1, 6-diiodo-1, 3, 5-cycloheptatrienes,” Journal of Organic Chemistry, vol. 50 no. 2, pp. 180-185, 1985.
  • [26] W. E. Billups, and W. A. Rodin, “Regioselective ring opening in annelated benzocyclopropenes,” Journal of Organic Chemistry, vol. 53, no. 6, pp. 1312-1314, 1988.
  • [27] B, Halton, C. S. Jones, A. J. Kay, D. Margetic, and S. Sretenovic, “Studies in the cycloproparene series: chemistry of 1H-cyclopropa [b] naphthalene-3, 6-dione and its transformation into 1 H-cyclopropa [b] anthracene-3, 8-dione 1,” Journal of the Chemical Society, Perkin Transactions, vol. 1 no. 14, pp. 2205-2210, 2000.
  • [28] A. Menzek, A. Altundas, and D. Gueltekin, “A new, safe and convenient procedure for reduction of naphthalene and anthracene: synthesis of tetralin in a one-pot reaction,” Journal of Chemical Research, vol. 2003, no. 11, pp. 752-753, 2003.
  • [29] D. P. Kelly, M. G. Banwell, N. K. Ireland, and A. L. Noel, “Proton-carbon-13 coupling constants in carbocations. 6. Generation and trapping of the (1a. alpha., 7a. alpha.)-1a, 2, 7, 7a-tetrahydro-1H-cyclopropa [b] naphthalen-2-yl cation,” Journal of Organic Chemistry, vol. 56, no. 6, pp. 2040-2045, 1991.
  • [30] W. E. Billups, and W. Y. Chow, “Naphtho [b] cyclopropene,” Journal of the American Chemical Society, vol. 95, no. 12, pp. 4099-4100, 1973.
  • [31] F. Niedermair, S. M. Borisov, G. Zenkl, O. T. Hofmann, H. Weber, R. Saf, and I. Klimant, “Tunable phosphorescent NIR oxygen indicators based on mixed benzo-and naphthoporphyrin complexes,” Inorganic Chemistry, vol. 49, no. 20, pp. 9333-9342, 2010.
There are 31 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Musa Erdoğan 0000-0001-6097-2862

Publication Date June 30, 2021
Submission Date April 3, 2021
Acceptance Date April 19, 2021
Published in Issue Year 2021

Cite

APA Erdoğan, M. (2021). An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene. Sakarya University Journal of Science, 25(3), 714-722. https://doi.org/10.16984/saufenbilder.909041
AMA Erdoğan M. An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene. SAUJS. June 2021;25(3):714-722. doi:10.16984/saufenbilder.909041
Chicago Erdoğan, Musa. “An Efficient Synthetic Approach for the Transition Metal-Free Preparation of 2-Bromo-3-(bromomethyl)naphthalene from Naphthalene”. Sakarya University Journal of Science 25, no. 3 (June 2021): 714-22. https://doi.org/10.16984/saufenbilder.909041.
EndNote Erdoğan M (June 1, 2021) An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene. Sakarya University Journal of Science 25 3 714–722.
IEEE M. Erdoğan, “An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene”, SAUJS, vol. 25, no. 3, pp. 714–722, 2021, doi: 10.16984/saufenbilder.909041.
ISNAD Erdoğan, Musa. “An Efficient Synthetic Approach for the Transition Metal-Free Preparation of 2-Bromo-3-(bromomethyl)naphthalene from Naphthalene”. Sakarya University Journal of Science 25/3 (June 2021), 714-722. https://doi.org/10.16984/saufenbilder.909041.
JAMA Erdoğan M. An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene. SAUJS. 2021;25:714–722.
MLA Erdoğan, Musa. “An Efficient Synthetic Approach for the Transition Metal-Free Preparation of 2-Bromo-3-(bromomethyl)naphthalene from Naphthalene”. Sakarya University Journal of Science, vol. 25, no. 3, 2021, pp. 714-22, doi:10.16984/saufenbilder.909041.
Vancouver Erdoğan M. An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene. SAUJS. 2021;25(3):714-22.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.