In this study, two clustering algorithms and their success in fault isolation have been investigated in order to use in our fault tolerant control (FTC) system. With so many applications used today, the mathematical model of the system cannot be completely established. Therefore, in this study, fault detection and isolation (FDI) is realized by using knowledge-based methods, without the need for any mathematical model. Sensor data, which are taken offline by FDI, are clustered to create knowledge base by means of k-means and farthest first traversal algorithm (FFTA), respectively. The results obtained by the two algorithms are compared and FFTA has found to be more successful in fault tolerance.
In this study, two clustering algorithms and their success in fault isolation have been investigated in order to use in our fault tolerant control (FTC) system. With so many applications used today, the mathematical model of the system cannot be completely established. Therefore, in this study, fault detection and isolation (FDI) is realized by using knowledge-based methods, without the need for any mathematical model. Sensor data, which are taken offline by FDI, are clustered to create knowledge base by means of k-means and farthest first traversal algorithm (FFTA), respectively. The results obtained by the two algorithms are compared and FFTA has found to be more successful in fault tolerance.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Research Articles |
Authors | |
Publication Date | April 1, 2013 |
Submission Date | April 24, 2012 |
Acceptance Date | December 18, 2012 |
Published in Issue | Year 2013 Volume: 17 Issue: 1 |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.