Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

Solution of Macroscopic State Equations of Blume-Capel Model Using Nonlinear Dynamics Concepts

Year 2013, Volume: 17 Issue: 1, 53 - 60, 01.04.2013

Abstract

The macroscopic state equations of Blume-Capel Model were solved by using the concepts of nonlinear dynamics. Negative and positive exchange constant values yield bifurcations of pitchfork and subcritical flip types, respectively. Hence, we obtained bifurcations corresponding to second order phase transitions. The critical values of parameters were calculated from the neutral stability condition and the 3-dimensional phase diagram was plotted.

References

  • Cooke A H, Martin D and Wells M R, Solid State Commun 9, 519 (1971).
  • Sayetat F, Boucherle J X, Belakhovsky M, Kallel A, Tcheou F and Fuess H, Phys. Letters 35A , 361 (1971).
  • Capel H W, Physica 32, 966 (1966).
  • Blume M, Phys. Rev. 141, 517 (1966).
  • Siqueira A E, Fittipaldi I P, Physica A 138, 599 (1986).
  • Tanaka Y, Uryˆu N, J. Phys. Soc. Japan 50, 1140 (1981).
  • Saul D M, Wortis M, Stauffer D, Phys. Rev. B 9, 4964 (1974).
  • Berker A N, Wortis M, Phys. Rev. B 14, 4946 (1976).
  • Arora B L, Landau D P, Proc. AIP 5, 352 (1972).
  • Takanaka M, Takahashi K, Phys. Stat. Sol. B 93, K85 (1979).
  • Ng W M, Barry J H, Phys Rev B 17, 3675 (1978).
  • Ekiz C, Keskin M, Yalçın O, Physica A 293, 215 (2001).
  • Keskin M, Ekiz C, Yalçın O, Physica A 267, 392 (1999).
  • Keskin M, Özgan Ş, Physica Scriptia 42, 349 (1990).
  • Özsoy O, Keskin M, Physica A 319, 404 (2003).
  • Cotton F A, The Crystal Field Theory. Chemical Applications of Group Theory, 3nd ed. (John Wiley& Sons, New York, 1990).
  • Kuang X Y, Phys. Lett. A 213, 89 (1996).
  • Thompson J M T, Stewart H B, Nonlinear Dynamics and Chaos, 2nd ed. (John Wiley& Sons, 2002).
  • Schuster H G, Just W, Deterministic Chaos, (Wiley-VCH Verlag, Weinheim, 2005).
  • Wigger G A, Felder E, Monnier R, and Ott H R, Pham L, Fisk Z, Phys. Rev. B, 014419 (2005).
  • Rößler S, Harikrishnan, Naveen Kumar C M, Bhat H L, Elizabeth Suja, Rößler U K, Steglich F, Wirth S, J Supercond Nov Magn 22, 205208 (2009).

Blume Capel Modelinin Mikroskopik Durum Denklemlerini Nonlinear Dinamik Kavramları Kullanilarak Çözülmesi

Year 2013, Volume: 17 Issue: 1, 53 - 60, 01.04.2013

Abstract

The macroscopic state equations of Blume-Capel Model were solved by using the concepts of nonlinear dynamics. Negative and positive exchange constant values yield bifurcations of pitchfork and subcritical flip types, respectively. Hence, we obtained bifurcations corresponding to second order phase transitions. The critical values of parameters were calculated from the neutral stability condition and the 3-dimensional phase diagram was plotted.

References

  • Cooke A H, Martin D and Wells M R, Solid State Commun 9, 519 (1971).
  • Sayetat F, Boucherle J X, Belakhovsky M, Kallel A, Tcheou F and Fuess H, Phys. Letters 35A , 361 (1971).
  • Capel H W, Physica 32, 966 (1966).
  • Blume M, Phys. Rev. 141, 517 (1966).
  • Siqueira A E, Fittipaldi I P, Physica A 138, 599 (1986).
  • Tanaka Y, Uryˆu N, J. Phys. Soc. Japan 50, 1140 (1981).
  • Saul D M, Wortis M, Stauffer D, Phys. Rev. B 9, 4964 (1974).
  • Berker A N, Wortis M, Phys. Rev. B 14, 4946 (1976).
  • Arora B L, Landau D P, Proc. AIP 5, 352 (1972).
  • Takanaka M, Takahashi K, Phys. Stat. Sol. B 93, K85 (1979).
  • Ng W M, Barry J H, Phys Rev B 17, 3675 (1978).
  • Ekiz C, Keskin M, Yalçın O, Physica A 293, 215 (2001).
  • Keskin M, Ekiz C, Yalçın O, Physica A 267, 392 (1999).
  • Keskin M, Özgan Ş, Physica Scriptia 42, 349 (1990).
  • Özsoy O, Keskin M, Physica A 319, 404 (2003).
  • Cotton F A, The Crystal Field Theory. Chemical Applications of Group Theory, 3nd ed. (John Wiley& Sons, New York, 1990).
  • Kuang X Y, Phys. Lett. A 213, 89 (1996).
  • Thompson J M T, Stewart H B, Nonlinear Dynamics and Chaos, 2nd ed. (John Wiley& Sons, 2002).
  • Schuster H G, Just W, Deterministic Chaos, (Wiley-VCH Verlag, Weinheim, 2005).
  • Wigger G A, Felder E, Monnier R, and Ott H R, Pham L, Fisk Z, Phys. Rev. B, 014419 (2005).
  • Rößler S, Harikrishnan, Naveen Kumar C M, Bhat H L, Elizabeth Suja, Rößler U K, Steglich F, Wirth S, J Supercond Nov Magn 22, 205208 (2009).
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Asaf Tolga Ülgen This is me

Naci Sünel This is me

Publication Date April 1, 2013
Submission Date September 19, 2012
Acceptance Date November 6, 2012
Published in Issue Year 2013 Volume: 17 Issue: 1

Cite

APA Ülgen, A. T., & Sünel, N. (2013). Blume Capel Modelinin Mikroskopik Durum Denklemlerini Nonlinear Dinamik Kavramları Kullanilarak Çözülmesi. Sakarya University Journal of Science, 17(1), 53-60. https://doi.org/10.16984/saufbed.62612
AMA Ülgen AT, Sünel N. Blume Capel Modelinin Mikroskopik Durum Denklemlerini Nonlinear Dinamik Kavramları Kullanilarak Çözülmesi. SAUJS. April 2013;17(1):53-60. doi:10.16984/saufbed.62612
Chicago Ülgen, Asaf Tolga, and Naci Sünel. “Blume Capel Modelinin Mikroskopik Durum Denklemlerini Nonlinear Dinamik Kavramları Kullanilarak Çözülmesi”. Sakarya University Journal of Science 17, no. 1 (April 2013): 53-60. https://doi.org/10.16984/saufbed.62612.
EndNote Ülgen AT, Sünel N (April 1, 2013) Blume Capel Modelinin Mikroskopik Durum Denklemlerini Nonlinear Dinamik Kavramları Kullanilarak Çözülmesi. Sakarya University Journal of Science 17 1 53–60.
IEEE A. T. Ülgen and N. Sünel, “Blume Capel Modelinin Mikroskopik Durum Denklemlerini Nonlinear Dinamik Kavramları Kullanilarak Çözülmesi”, SAUJS, vol. 17, no. 1, pp. 53–60, 2013, doi: 10.16984/saufbed.62612.
ISNAD Ülgen, Asaf Tolga - Sünel, Naci. “Blume Capel Modelinin Mikroskopik Durum Denklemlerini Nonlinear Dinamik Kavramları Kullanilarak Çözülmesi”. Sakarya University Journal of Science 17/1 (April 2013), 53-60. https://doi.org/10.16984/saufbed.62612.
JAMA Ülgen AT, Sünel N. Blume Capel Modelinin Mikroskopik Durum Denklemlerini Nonlinear Dinamik Kavramları Kullanilarak Çözülmesi. SAUJS. 2013;17:53–60.
MLA Ülgen, Asaf Tolga and Naci Sünel. “Blume Capel Modelinin Mikroskopik Durum Denklemlerini Nonlinear Dinamik Kavramları Kullanilarak Çözülmesi”. Sakarya University Journal of Science, vol. 17, no. 1, 2013, pp. 53-60, doi:10.16984/saufbed.62612.
Vancouver Ülgen AT, Sünel N. Blume Capel Modelinin Mikroskopik Durum Denklemlerini Nonlinear Dinamik Kavramları Kullanilarak Çözülmesi. SAUJS. 2013;17(1):53-60.