Research Article
BibTex RIS Cite

Pedikül vidasının yerleşim konumuna göre yorulma davranışının sonlu elemanlar yöntemiyle incelenmesi

Year 2016, Volume: 20 Issue: 2, 301 - 306, 01.08.2016
https://doi.org/10.16984/saufenbilder.31154

Abstract

İnsan vücudunda en sık ağrı genellikle sırt bölgesinde yaşanır. Yapılan istatistikler birçok insanların yaşamının bir noktasında sırt ağrısı yaşadıklarını göstermektedir. Şiddetli bel ve sırt ağrısı tedavisinde yaşanan ağrıyı azaltmak ve omurganın doğal hareket aralığın geri yüklemek için cerrahi tedavi gerekebilir. Pedikül vidalar yaygın olarak omurgada çeşitli fiziksel bozuklukların tedavisinde kullanılmaktadır. Ancak, vidanın omurganın karmaşıklığı nedeniyle yanlış açılarda konumlandırılması vidaya daha fazla yük gelmesine sebep olmakta ve malzeme yorulması nedeniyle vidalarda hasar meydana gelmektedir. Bu çalışmada, sonlu eleman analizi ile pedikül vidasının omurga cerrahisi sırasında optimal konum ve açıda takılması için vidalarda meydana gelen yorulma olaylarını belirlemek amaçlanmıştır. Bilgisayarlı tomografi (BT) görüntülerinden elde edilen ham datalar işlenerek üç boyutlu vertebra modeli elde edilmiştir. Vertebra modelinde sagittal eksene göre 27° ve 40° açılarda pedikül vidaları yerleştirilmiştir. Pedikül vidası üç boyutlu katı modelleri, üretici firma kataloglarından elde edilen parametrik değerler kullanılarak Solidworks programında çizilmiş ve üç boyutlu pedikül vidası ve vertebra modelleri, 2 farklı açı ile Solidworks programında montajı yapılmıştır. Elde edilen model, sonlu elemanlar tabanlı ANSYS programına aktarılarak, normal duruş pozisyonunda vertebra yüzeyine gelen yükler uygulanmıştır. İmplant malzemesi olarak literatürden elde edilen Ti-6AL-4V titanyum özellikleri ve S-N grafiği ANSYS programına girilmiştir. Pedikül vidasının vertebra içindeki konumlarına göre ortalama gerilme ve yorulma davranışı karşılaştırılmıştır. Sonlu elemanlar analizleri sonucunda pedikül vidasının konumu vertebranın orta eksenine yakın kortical rim bölgede ortalama gerilme sırasıyla 554 ve 518 MPa olarak hesaplanmıştır. En az ömür çıkan bölgenin, en fazla gerilme değerinin hesaplandığı vidanın baş kısmına yakın bölge olduğu bulunmuş ve ömür değerlerinin konuma göre değiştiği tespit edilmiştir. Elde edilen bulgular literatürde bahsedilen vida kırılması olan konumla örtüşmektedir. Bu çalışma da cerrahların vida yerleştirilmesi ile ilgili ameliyat sonrası yaşayabilecek sıkıntıları önlemek amacıyla ön çalışma yapılmıştır. Bu nedenle sagittal eksene yakın yerleştirilen vidanın daha çok işlev yapıp daha uzun ömür olduğu dolayısıyla da hasar riskinin en az olduğu görülmüştür. Bu nedenle Cerrahların vidaları konum ve açı durumlarını gözeterek yerleştirmeleri ameliyat başarısını etkileyecek bir etken olabileceği düşünülmektedir. 

References

  • Roy-Camille R, Sailant G, Mazzel C. Internalfixation of thelumbarspinewithpediclescrewplating. ClinOrthop 1986;203:7–17.
  • Krag MH. Biomechanics of thoracolumbarspinalfixationareview. Spine 1991;16:84S–99.
  • Esses SI, Sachs BL, Dreyzin V. Complicationsassociatedwiththetechnique of pediclescrewfixation—a selectedsurvey of ABS members. Spine 1993;18:2231–9.
  • Carl AL, Tromanhauser SG, Roger DJ. Pedicle screw instrumentation for thora columbar burst fracturesand fracture-dislocations. Spine 1992;17:317S–24.
  • Cunningham BW, Sefter JC, Shono Y, McAfee PC. Staticandcyclicalbiomechanicalanalysis of pediclescrewspinalconstructs.Spine 1993;18:1677–88.
  • Cotler JM, Star AM. Complications of spinefusions. In: Cotler JM, Cotler HB, editors. Spinalfusion: scienceandtechnique. New York: Springer-Verlag; 1990. pp. 361–87.
  • Dickman CA, Fessler RG, MacMillan M, Haid RW. Transpedicularscrew-rodfixation of thelumbarspine: operativetechniqueandoutcome in 104 cases. J Neurosurg 1992;77:860–70.
  • Matsuzake H, Tokuhashi Y, Matsumato, et al. Problemsandsolutions of pediclescrewplatefixation of lumbarspine. Spine 1990;15:1159–65.
  • Niu CC, Chen WJ, Chen LH, Shih CH. Reduction-fixationspinalsystem in spondylolisthesis. Am J Orthop 1996;25:418–24.
  • Cunningham BW, Sefter JC, Shono Y, McAfee PC. Staticandcyclicalbiomechanicalanalysis of pediclescrewspinalconstructs. Spine 1993;18:1677–88.
  • Wittenberg RH, Shea M, Edwards WT, Swartz DE, White AA, Hayes WC. A biomechanicalstudy of thefatiguecharacteristics of thoracolumbarfixationimplant in a calfspine model. Spine 1992;17:S121–8.
  • Sato Y, Wadamoto M, Tsuga K, Teixeira ER. 1999. Theeffectiveness of element downsizing on a three-dimensionalfinite element model of bone trabeculae in implantbiomechanics. J Oral Rehabil26:288–91.
  • Sahin S, Cehreli MC, Yalc ¸ın E. 2002. Theinfluence of functionalforces on thebiomechanics of implant-supportedprosthesesareview. J Dent20:271–82.
  • TIPSAN , General Catalogue, AngledPlateImplants. 2005
  • McLain RF, McKinley TO, Yerby SA, Smith TS, Sarigul-Klijn N. Theeffect of bone quality on pediclescrewloading in axialinstability—a synthetic model. Spine 1997;22:1454–60.
  • McKinley TO, McLain RF, Yerby SA, Sarigul-Klijn N, SmithTS. Theeffect of pediclemorphometry on pediclescrewloadingasynthetic model. Spine 1997;22:246–52.
  • Youssef JA, McKinley TO, Yerby SA, McLain RF. Characteristics of pediclescrewloadingeffect of sagittalinsertionangle on intrapedicularbendingmoments. Spine 1999;24:1077–81.
  • Chen-Sheng C, Wen-Jer C, Cheng-Kung C, Shyh-Hua E J, Shan-Chang C, Chang-Chih W. Failureanalysis of brokenpediclescrews on spinalinstrumentation. MedicalEngineering&Physics 27 (2005) 487–496
  • -Ebelke DK, Asher MA, Neff JR, Krake DP. Survivorshipanalysisof VSP spineinstrumentation in thetreatment of thoracolumbarandlumbarburstfractures. Spine 1991;16:428S–32.
  • McAfee PC, Weiland DJ, Carlow JJ. Survivorshipanalysis ofpediclespinalinstrumentation. Spine 1991;16:422S–7.

The investigation of the behaviour of tıredness according to the location of pedicle screw placement by finite element method

Year 2016, Volume: 20 Issue: 2, 301 - 306, 01.08.2016
https://doi.org/10.16984/saufenbilder.31154

Abstract

The most common pain in a human body usually occurs in the back part. The statistics show that many people experience pack pain in a period of their lives. Surgical intervention may be necessary to relieve the pain experienced during the treatment of the severe belly and back pain and to reload the spine's natural range of motion. Pedicle screws are mainly used when treating various physical deformations in the spine. Yet, incorrectly positioning the screws because of the sophisticated structure of the spine creates extra pressure on the screws and this creates damage on them because of the material fatigue. It is aimed in this research, that to determine the fatigue events occurring in the screws while setting the pedicle screw in optimal position and angle during the spine surgery. A three dimensioned vertebra model was created by processing the raw data obtained from the computed tomography images. In the vertebra model the pedicle screws were inserted in 27° and 40° angles according to the sagittal axis. The three dimension solid models of the pedicle screws were designed with the Solidworks software by using the parametric values taken from the manufacturer catalogs, and the three dimension pedicle screw and vertebra models were mounted in the Solidworks software in two different angles. The loads pressing over the vertebra surface in the normal stance position were applied after transferring the created model into the finite elements based ANSYS software. The titanium characteristics of the Ti-6AL-4V taken from the literature as implanting tool and S-N graphic were added into the ANSYS software. The a average stress and fatigue behaviours of the pedicle screw according to different positions in the vertebra model were compared. At the end of the finite elements analysis, when the position of the pedicle screw was near the central axis of the vertebra, in the cortical rim area, the average stress was calculated as 554 and 518 MPa. The area found to have the shortest lifescale was the one near to the head of the screw, where the most amount of stress was calculated and therefore it was discovered that lifescale values varied according to the area of stress. The findings comply with the position were the screw breakage was occured as mentioned in the literature. A preliminary study was done with the aim of preventing the troubles to be faced after the operation of mounting the screw by the surgeons in this research. Thus it was discovered that the screw mounted closer to the sagittal axis functioned more and had longer lifespan, and therefore the risk of damage was the least. For this cause it is thought that for surgeons to mount the screws by taking the position and angles into consideration is a factor to affect the success of the operation.

References

  • Roy-Camille R, Sailant G, Mazzel C. Internalfixation of thelumbarspinewithpediclescrewplating. ClinOrthop 1986;203:7–17.
  • Krag MH. Biomechanics of thoracolumbarspinalfixationareview. Spine 1991;16:84S–99.
  • Esses SI, Sachs BL, Dreyzin V. Complicationsassociatedwiththetechnique of pediclescrewfixation—a selectedsurvey of ABS members. Spine 1993;18:2231–9.
  • Carl AL, Tromanhauser SG, Roger DJ. Pedicle screw instrumentation for thora columbar burst fracturesand fracture-dislocations. Spine 1992;17:317S–24.
  • Cunningham BW, Sefter JC, Shono Y, McAfee PC. Staticandcyclicalbiomechanicalanalysis of pediclescrewspinalconstructs.Spine 1993;18:1677–88.
  • Cotler JM, Star AM. Complications of spinefusions. In: Cotler JM, Cotler HB, editors. Spinalfusion: scienceandtechnique. New York: Springer-Verlag; 1990. pp. 361–87.
  • Dickman CA, Fessler RG, MacMillan M, Haid RW. Transpedicularscrew-rodfixation of thelumbarspine: operativetechniqueandoutcome in 104 cases. J Neurosurg 1992;77:860–70.
  • Matsuzake H, Tokuhashi Y, Matsumato, et al. Problemsandsolutions of pediclescrewplatefixation of lumbarspine. Spine 1990;15:1159–65.
  • Niu CC, Chen WJ, Chen LH, Shih CH. Reduction-fixationspinalsystem in spondylolisthesis. Am J Orthop 1996;25:418–24.
  • Cunningham BW, Sefter JC, Shono Y, McAfee PC. Staticandcyclicalbiomechanicalanalysis of pediclescrewspinalconstructs. Spine 1993;18:1677–88.
  • Wittenberg RH, Shea M, Edwards WT, Swartz DE, White AA, Hayes WC. A biomechanicalstudy of thefatiguecharacteristics of thoracolumbarfixationimplant in a calfspine model. Spine 1992;17:S121–8.
  • Sato Y, Wadamoto M, Tsuga K, Teixeira ER. 1999. Theeffectiveness of element downsizing on a three-dimensionalfinite element model of bone trabeculae in implantbiomechanics. J Oral Rehabil26:288–91.
  • Sahin S, Cehreli MC, Yalc ¸ın E. 2002. Theinfluence of functionalforces on thebiomechanics of implant-supportedprosthesesareview. J Dent20:271–82.
  • TIPSAN , General Catalogue, AngledPlateImplants. 2005
  • McLain RF, McKinley TO, Yerby SA, Smith TS, Sarigul-Klijn N. Theeffect of bone quality on pediclescrewloading in axialinstability—a synthetic model. Spine 1997;22:1454–60.
  • McKinley TO, McLain RF, Yerby SA, Sarigul-Klijn N, SmithTS. Theeffect of pediclemorphometry on pediclescrewloadingasynthetic model. Spine 1997;22:246–52.
  • Youssef JA, McKinley TO, Yerby SA, McLain RF. Characteristics of pediclescrewloadingeffect of sagittalinsertionangle on intrapedicularbendingmoments. Spine 1999;24:1077–81.
  • Chen-Sheng C, Wen-Jer C, Cheng-Kung C, Shyh-Hua E J, Shan-Chang C, Chang-Chih W. Failureanalysis of brokenpediclescrews on spinalinstrumentation. MedicalEngineering&Physics 27 (2005) 487–496
  • -Ebelke DK, Asher MA, Neff JR, Krake DP. Survivorshipanalysisof VSP spineinstrumentation in thetreatment of thoracolumbarandlumbarburstfractures. Spine 1991;16:428S–32.
  • McAfee PC, Weiland DJ, Carlow JJ. Survivorshipanalysis ofpediclespinalinstrumentation. Spine 1991;16:422S–7.
There are 20 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Levent Uğur

Publication Date August 1, 2016
Submission Date January 11, 2016
Acceptance Date March 27, 2016
Published in Issue Year 2016 Volume: 20 Issue: 2

Cite

APA Uğur, L. (2016). The investigation of the behaviour of tıredness according to the location of pedicle screw placement by finite element method. Sakarya University Journal of Science, 20(2), 301-306. https://doi.org/10.16984/saufenbilder.31154
AMA Uğur L. The investigation of the behaviour of tıredness according to the location of pedicle screw placement by finite element method. SAUJS. August 2016;20(2):301-306. doi:10.16984/saufenbilder.31154
Chicago Uğur, Levent. “The Investigation of the Behaviour of tıredness According to the Location of Pedicle Screw Placement by Finite Element Method”. Sakarya University Journal of Science 20, no. 2 (August 2016): 301-6. https://doi.org/10.16984/saufenbilder.31154.
EndNote Uğur L (August 1, 2016) The investigation of the behaviour of tıredness according to the location of pedicle screw placement by finite element method. Sakarya University Journal of Science 20 2 301–306.
IEEE L. Uğur, “The investigation of the behaviour of tıredness according to the location of pedicle screw placement by finite element method”, SAUJS, vol. 20, no. 2, pp. 301–306, 2016, doi: 10.16984/saufenbilder.31154.
ISNAD Uğur, Levent. “The Investigation of the Behaviour of tıredness According to the Location of Pedicle Screw Placement by Finite Element Method”. Sakarya University Journal of Science 20/2 (August 2016), 301-306. https://doi.org/10.16984/saufenbilder.31154.
JAMA Uğur L. The investigation of the behaviour of tıredness according to the location of pedicle screw placement by finite element method. SAUJS. 2016;20:301–306.
MLA Uğur, Levent. “The Investigation of the Behaviour of tıredness According to the Location of Pedicle Screw Placement by Finite Element Method”. Sakarya University Journal of Science, vol. 20, no. 2, 2016, pp. 301-6, doi:10.16984/saufenbilder.31154.
Vancouver Uğur L. The investigation of the behaviour of tıredness according to the location of pedicle screw placement by finite element method. SAUJS. 2016;20(2):301-6.