Research Article
BibTex RIS Cite

Kimyasal yöntem ile indirgenmiş grafen oksit sentezi ve karakterizasyonu

Year 2016, Volume: 20 Issue: 2, 349 - 357, 01.08.2016
https://doi.org/10.16984/saufenbilder.29009

Abstract

Üstün elektrik, mekanik, termal ve optik özellikleri ile grafen, araştırmaların odağında bir materyaldir. İndirgenmiş grafen oksit (RGO) ise grafen elde etmenin en etkili yollarından birisidir. Bu çalışmada modifiye Hummers yöntemi ile sentezlenen grafen oksitlerin (GO) indirgenmesi ile RGO elde edilmiştir. SEM görüntülerinden saydam RGO yapıları tespit edilmiştir. EDX/SEM analizinde, karbon (C) oranı yaklaşık %89 olarak bulunmuştur. FT-IR sonuçları ile GO yapısında var olan hidroksil, karbonil, epoksi ve alkoksi bağlarının RGO yapısından uzaklaştığı anlaşılmaktadır. Raman spektroskopisinde yeni sp2 yapıların oluştuğu ve düzenli yapı miktarının arttığını görülmüştür. XRD analizinde oksidasyon işlemi sırasında oluşan fonksiyonel grupların kimyasal işlem esnasında bozunmaları sonucu RGO’nun katmanları arası d-mesafesi 0,83 nm’den 0,36 nm’ye düştüğü görülmektedir. 

References

  • J. E. An, G. W. Jeon ve Y. G. Jeong, «Preparation and properties of polypropylene nanocomposites reinforced with exfoliated graphene,» Fibers And Polymers, cilt 13, no. 4, pp. 507-514, 2012.
  • Y. J. Yun, W. G. Hong, W. J. Kim, Y. Yun ve B. H. Kim, «A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics,» Advanced Materials, no. 25, pp. 5701-5705, 2013.
  • E. Skrzetuska, M. Puchalski ve I. Krucińska,, «Chemically driven printed textile sensors based on graphene and carbon nanotubes,» Sensors, no. 14, pp. 16816-16828, 2014.
  • M. Arseven, Polikristalin bakır folyo üzerinde grafen sentezi, Ankara: Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Hacettepe Üniversitesi, 2011.
  • C. Baykasoğlu ve A. Muğan, «Tek katmanlı bir grafen tabakasının kırılma davranışının incelenmesi,» %1 içinde 17-18 Haziran 2011, 1. Ulusal Nanoteknoloji Kongresi, İstanbul, 2011.
  • B. Kozal, Karbon tabanlı petek örgülerin elektronik özellikleri, Ankara: Doktora Tezi, Fen Bilimleri Enstitüsü, Ankara Üniversitesi, 2012.
  • M. C. Hsiao, S. H. Liao, Y. F. Lin, C. A. Wang, N. W. Pu, H. M. Tsai ve C. C. M. Ma, «Preparation and characterization of polypropylene-grafted-termally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite,» Nanoscala, no. 3, pp. 1516-1522, 2011.
  • H. J. Choi, S. M. Jung, J. M. Seo, D. W. Chang, L. Daic ve L. B. Baek, «Graphene for energy conversion and storage in fuel cells and supercapacitors,» Nano Energy, no. 1, pp. 534-551, 2012.
  • İ. Karteri, Ş. Karataş, A. Al-Ghamdi ve F. Yakuphanoğlu, «The electrical characteristics of thin film transistors with graphene oxide and organic insulators,» Synthetic Metals, no. 199, pp. 241-245, 2015.
  • R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres ve A. Geim, «Fine structure constant defines visual transparency of graphene,» Science, no. 320, p. 1308, 2008.
  • A. A. Topçu, A green pathway for the production of chemically exfoliated graphene sheets with the assistance of microwave irradiation, İstanbul: Master of Science, Material Science and Engineering, Koç University, 2012.
  • M. C. Hsiao, S. H. Liao, M. Y. Yen, P. Liu, N. W. Pu, C. A. Wang ve C. C. M. Ma, «Preparation of covalently functionalized graphene using residual oxygen-containing functional groups,» Applied Materials & Interfaces, cilt 2, no. 11, pp. 3092-3099, 2010.
  • E. L. Wolf, Aplications of graphene: An overview, London: Springer, 2014.
  • S. H. Ryu ve A. M. Shanmugharaj, «Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isotactic polypropylene nanocomposites,» Chemical Engineering Journal, no. 244, pp. 553-560, 2014.
  • S. Wang, H. Sun, H. M. Tade ve M. O. Tade, «Adsorptive remediation of enviromental pollutants using novel graphene-based nanomaterials,» Chemical Engineering Journal, no. 226, pp. 336-347, 2013.
  • B. Yuan, C. Bao, L. Song, N. Hong, K. M. Liew ve Y. Hu, «Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties,» Chemical Engineering Journal, no. 237, pp. 411-420, 2014.
  • A. M. Shanmugharaj, J. H. Yoon, W. .. Yang ve S. H. Ryu, «Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths,» Journal of Colloid and Interface Science, no. 401, pp. 148-154, 2013.
  • K. Javed, C. M. A. Galiba, F. Yanga, C. M. Chenb ve C. Wanga, «A new aproach to fabricate graphene electro-conductive networks on naturals fibers by ultraviolet curing method,» Synthetic Metals, no. 193, pp. 41-47, 2014.
  • Z. Dong, C. Jiang, H. Cheng, Y. Zhao, G. Shi, L. Jiang ve L. Qu, «Facile fabrication of light, flexible and multifunctional graphene fibers,» Advanced Materials, no. 24, pp. 1856-1861, 2012.
  • Z. Xu, Y. Zhang, P. Li ve C. Gao, «Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores,» American Chemical Society, cilt 6, no. 8, pp. 7103-7113, 2012.
  • F. Ma, N. Yuan ve J. Ding, «The conductive network made up by the reduced graphene nanosheet/polyaniline/polyvinyl chloride,» Journal of Applied Polymer Science, cilt 128, no. 6, pp. 3870-3875, 2013.
  • M. K. Shin, B. Lee, S. H. Kim, J. A. Lee, G. M. Spinks, S. Gambhir, G. G. Wallace, M. E. Kozlov, R. H. Baughman ve S. J. Kim, «Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes,» Nature Communications, no. 3, p. 650, 2012.
  • X. Li, P. Sun, L. Fan, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng ve H. Zhu, «Multifunctional graphene woven fabrics,» Scientific Reports, no. 2, p. 395, 2012.
  • S. Park ve R. S. Ruoff, «Chemical methods for the production of graphenes,» Nature Nanotechnology, cilt 4, no. 4, pp. 271-224, 2009.
  • V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo ve A. Buasri, «Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods,» Hindawi-Advances In Materials Science and Engineering, no. 2013, p. Article ID 923403, 2013.
  • M. F. R. Hanifah, J. Jaafar, M. Aziz, A. F. Ismail, M. A. Rahman ve M. H. D. Othman, «Synthesis of graphene oxide nanosheets via modified hummers’ method and its physicochemical properties,» Jurnal Teknologi, cilt 74, no. 1, pp. 189-192, 2015.
  • W. Chen, L. Yan ve P. R. Bangal, «Chemical reduction of graphene oxide to graphene by sulfur-containing compounds,» The Journal of Physical Chemistry C., cilt 114, no. 47, pp. 19885-19890, 2010.
  • A. A. Arbuzov, P. B. Tarasov ve V. E. Muradyan, «Synthesis of few-layer graphene sheets via chemical and thermal reduction of graphite oxide,» %1 içinde Proceedings of the International Conference Nanomaterials: Applications and Properties, Sumy State Unive, Sumy, Ukraine, 2012.
  • J. Chen, B. Yao, C. Li ve G. Shi, «An improved hummers method for eco-friendly synthesis of graphene oxide,» Carbon, cilt 64, no. 2013, pp. 225-229, 2013.
  • İ. Karteri, Ş. Karataş ve F. Yakuphanoğlu, «Electrical characterization of graphene oxide and organic dielectriclayers based on thin film transistor,» Applied Surface Science, no. 318, pp. 74-78, 2014.
  • Chemistry and Chemical Analysis, Dep. of Chemistry, Faculty of Mathematics and Natural Sci., , «Laboratory of Materials,» University of Turku, FINLAND, [Çevrimiçi]. Available: www.utu.fi/en/units/sci/units/chemistry/research/mcca/PublishingImages/GO%20rGO.jpg. [Erişildi: 4 Mayıs 2016].
  • C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard ve K. Kern, «Electronic transport properties of individual chemically reduced graphene oxide sheets,» Nano Letters, cilt 7, no. 11, pp. 3499-3503, 2007.
  • C. Botas, P. A. Lvarez, P. Blanco, M. Granda, C. Blanco, R. A. Santamari, L. J. Romasanta, R. Verdejo, M. A. Lo´Pez-Manchado ve R. Menendez, «Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods,» Carbon, no. 65, pp. 156-164, 2013.
  • H. Kim, A. A. Abdala ve C. W. Macosko, «Graphene/Polymer nanocomposites,» Macromolecules, no. 43, pp. 6515-6530, 2010.
  • C. Menchaca-Campos, C. García-Pérez, I. Castañeda, M. A. García-Sánchez, R. Guardián ve J. Uruchurtu, «Nylon/Graphene oxide electrospun composite coating,» International Journal of Polymer Science, cilt Article ID 621618, 2013.
  • D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu ve J. M. Tour, «Improved synthesis of graphene oxide,» Amercan Chemical Society ACS Nano, cilt 4, no. 8, pp. 4806-4814, 2010.
  • S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali ve R. S. Ruoff, «Hydrazine-reduction of graphite-and graphene oxide,» Carbon, cilt 49, no. 9, pp. 3019-3023, 2011.
  • A. Shalaby, D. Nihtianova, P. Markov, A. D. Staneva, R. S. Iordanova ve Y. B. Dimitriev, «“Structural analysis of reduced graphene oxide by transmission electron microscopy,» Bulgarian Chemical Communications, cilt 47, no. 1, pp. 291-295, 2015.
  • S. Pei ve H. M. Cheng, «The reduction of graphene oxide,» Carbon, cilt 50, no. 9, pp. 3210-3228, 2012.
  • S. Abdolhosseinzadeh, H. Asgharzadeh ve H. S. Kim, «Fast and fully-scalable synthesis of reduced graphene oxide,» Scientific Reports, cilt 5, 2015.
  • Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong ve K. P. Loh, «Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demenstration of tunable optical limiting properties,» Chemistry of Materials, no. 21, pp. 2950-2956, 2009.
  • J. Song, X. Wang ve C. T. Chang, «Preparation and characterization of graphene oxide,» Hindawi-Journal of Nanomaterials, no. 2014, p. Artical ID 276143, 2014.
  • H. Feng, R. Cheng, X. Zhao, X. Duan ve J. Li, «A low-temperature method to produce highly reduced graphene oxide,» Nature Communications, no. 4, p. 1539, 2013.
  • D. Konios, M. M. Stylianakis, E. Stratakis ve E. Kymakis, «Dispersion behaviour of graphene oxide and reduced graphene oxide,» Journal of colloid and interface science, no. 430, pp. 108-112, 2014.
  • L. Shahriary ve A. A. Athawale, «Graphene oxide synthesized by using modified hummers approach,» Intenational Journal Of Renewable Energy And Environmental Engineering, cilt 02, no. 01, pp. 58-63, 2014.
  • Y. Gao , D. Ma , C. Wang, J. Guan ve X. Bao, «Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature,» Chemical Communications, cilt 47, no. 8, pp. 2432-2434, 2011.
  • A. C. Ferrari, «Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects,» Solid State Communications, no. 143, pp. 47-57, 2007.
  • K. H. Liao, A. Mittal, S. Bose, C. Leighton, K. A. Mkhoyan ve C. W. Mocosko, «Aqueous only route toward graphene from graphite oxide,» American Chemical Society-ACS Nano, cilt 5, no. 2, pp. 1253-1258, 2011.
  • M. Wojtoniszak, X. Chen, R. J. Kalenczuk, A. Wajde, J. Lapczuk, M. Kurzewski, M. Drozdzik, P. .. Chu ve E. Borowiak-Palen, «Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide,» Colloids and Surfaces B: Biointerfaces, no. 89, pp. 79-85, 2012.
  • X. Bajaj, T. V. Sreekumar ve K. Sen, «Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers,» Journal of Applied Polymer Science, cilt 86, no. 3, pp. 773-787, 2002.
  • İ. Tiyek ve F. Bozdoğan, «Poliakrilonitril Lif Üretiminde Koagülasyon Banyo Sıcaklığının Lif İçyapısına Etkisinin Geniş Açı X-Işınları Difraksiyonu İle İncelenmesi,» Tekstil ve Konfeksiyon, no. 2, pp. 114-120, 2008.
  • L. Erzurumluoğlu, Poli(Hekzametilen Adipamit) (Poliamid 66) esaslı karbon lifi üretimi sırasında antioksidan kullanımının termal stabilizasyon ve karbonizasyon aşamalarına etkilerinin araştırılması, yapısal ve mekanik özelliklerinin karakterize edilmesi, Kayseri: Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Erciyes Üniversitesi, 2015.
  • H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'Homme, R. Car, D. A. Saville ve I. A. Aksay, «Functionalized single graphene sheets derived from splitting graphite oxide,» The Journal of Physical Chemistry B, cilt 110, no. 17, pp. 8535-5839, 2006.
  • D. Pandey, R. Reifenberger ve R. Piner, «Scanning probe microscopy study of exfoliated oxidized graphene sheets,» Surface Science, cilt 602, no. 9, p. 1607, 2008.
  • D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway ve V. Yu, «Experimental review of graphene,» ISRN Condensed Matter Physics, no. 2012, 2012.
  • A. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov ve A. K. Geim, «The electronic properties of graphene,» Reviews of Modern Physics, cilt 81, no. 1, p. 109, 2009.
  • K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim ve H. L. Stormer, «Ultrahigh electron mobility in suspended graphene,» Solid State Communications, cilt 146, no. 9, pp. 351-355, 2008.
  • S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, T. S. Nguyen ve R. S. Ruoff, «Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,» Carbon, cilt 45, no. 7, pp. 1558-1565, 2007.
  • T. Zhou , F. Chen , K. Liu, H. Deng, Q. Zhang, J. Feng ve Q. Fu, «A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite,» Nanotechnology, no. 22, p. 045704, 2011.

Synthesis of reduced graphene oxide by chemical method and its characterization

Year 2016, Volume: 20 Issue: 2, 349 - 357, 01.08.2016
https://doi.org/10.16984/saufenbilder.29009

Abstract

More recently, graphene, having outstanding electrical, mechanical, thermal and optical properties, have become an important research topic. Reduced graphene oxide (RGO) is one of the most effective way to obtain the graphene. In this study, RGO was obtained by reduction of graphene oxide (GO) synthesized by a modified Hummers method. The transparent structures of RGO have been identified through SEM images. The ratio of carbon (C) was found to be approximately 89% by SEM/EDX analysis. It was proven by FT-IR analysis that hydroxyl, carbonyl, epoxy and alkoxy bonds in GO structure were removed from RGO structure. On the other hand, RAMAN spectroscopic studies showed that the new sp2 structures occurred, and the amount of regular structures increased. XRD analysis indicated that d-spacing between the layers of RGO decreased from 0,83 nm to 0,36 nm due to the degradation of functional groups during the chemical process, which were formed in the oxidation process.

References

  • J. E. An, G. W. Jeon ve Y. G. Jeong, «Preparation and properties of polypropylene nanocomposites reinforced with exfoliated graphene,» Fibers And Polymers, cilt 13, no. 4, pp. 507-514, 2012.
  • Y. J. Yun, W. G. Hong, W. J. Kim, Y. Yun ve B. H. Kim, «A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics,» Advanced Materials, no. 25, pp. 5701-5705, 2013.
  • E. Skrzetuska, M. Puchalski ve I. Krucińska,, «Chemically driven printed textile sensors based on graphene and carbon nanotubes,» Sensors, no. 14, pp. 16816-16828, 2014.
  • M. Arseven, Polikristalin bakır folyo üzerinde grafen sentezi, Ankara: Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Hacettepe Üniversitesi, 2011.
  • C. Baykasoğlu ve A. Muğan, «Tek katmanlı bir grafen tabakasının kırılma davranışının incelenmesi,» %1 içinde 17-18 Haziran 2011, 1. Ulusal Nanoteknoloji Kongresi, İstanbul, 2011.
  • B. Kozal, Karbon tabanlı petek örgülerin elektronik özellikleri, Ankara: Doktora Tezi, Fen Bilimleri Enstitüsü, Ankara Üniversitesi, 2012.
  • M. C. Hsiao, S. H. Liao, Y. F. Lin, C. A. Wang, N. W. Pu, H. M. Tsai ve C. C. M. Ma, «Preparation and characterization of polypropylene-grafted-termally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite,» Nanoscala, no. 3, pp. 1516-1522, 2011.
  • H. J. Choi, S. M. Jung, J. M. Seo, D. W. Chang, L. Daic ve L. B. Baek, «Graphene for energy conversion and storage in fuel cells and supercapacitors,» Nano Energy, no. 1, pp. 534-551, 2012.
  • İ. Karteri, Ş. Karataş, A. Al-Ghamdi ve F. Yakuphanoğlu, «The electrical characteristics of thin film transistors with graphene oxide and organic insulators,» Synthetic Metals, no. 199, pp. 241-245, 2015.
  • R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres ve A. Geim, «Fine structure constant defines visual transparency of graphene,» Science, no. 320, p. 1308, 2008.
  • A. A. Topçu, A green pathway for the production of chemically exfoliated graphene sheets with the assistance of microwave irradiation, İstanbul: Master of Science, Material Science and Engineering, Koç University, 2012.
  • M. C. Hsiao, S. H. Liao, M. Y. Yen, P. Liu, N. W. Pu, C. A. Wang ve C. C. M. Ma, «Preparation of covalently functionalized graphene using residual oxygen-containing functional groups,» Applied Materials & Interfaces, cilt 2, no. 11, pp. 3092-3099, 2010.
  • E. L. Wolf, Aplications of graphene: An overview, London: Springer, 2014.
  • S. H. Ryu ve A. M. Shanmugharaj, «Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isotactic polypropylene nanocomposites,» Chemical Engineering Journal, no. 244, pp. 553-560, 2014.
  • S. Wang, H. Sun, H. M. Tade ve M. O. Tade, «Adsorptive remediation of enviromental pollutants using novel graphene-based nanomaterials,» Chemical Engineering Journal, no. 226, pp. 336-347, 2013.
  • B. Yuan, C. Bao, L. Song, N. Hong, K. M. Liew ve Y. Hu, «Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties,» Chemical Engineering Journal, no. 237, pp. 411-420, 2014.
  • A. M. Shanmugharaj, J. H. Yoon, W. .. Yang ve S. H. Ryu, «Synthesis, characterization, and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths,» Journal of Colloid and Interface Science, no. 401, pp. 148-154, 2013.
  • K. Javed, C. M. A. Galiba, F. Yanga, C. M. Chenb ve C. Wanga, «A new aproach to fabricate graphene electro-conductive networks on naturals fibers by ultraviolet curing method,» Synthetic Metals, no. 193, pp. 41-47, 2014.
  • Z. Dong, C. Jiang, H. Cheng, Y. Zhao, G. Shi, L. Jiang ve L. Qu, «Facile fabrication of light, flexible and multifunctional graphene fibers,» Advanced Materials, no. 24, pp. 1856-1861, 2012.
  • Z. Xu, Y. Zhang, P. Li ve C. Gao, «Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores,» American Chemical Society, cilt 6, no. 8, pp. 7103-7113, 2012.
  • F. Ma, N. Yuan ve J. Ding, «The conductive network made up by the reduced graphene nanosheet/polyaniline/polyvinyl chloride,» Journal of Applied Polymer Science, cilt 128, no. 6, pp. 3870-3875, 2013.
  • M. K. Shin, B. Lee, S. H. Kim, J. A. Lee, G. M. Spinks, S. Gambhir, G. G. Wallace, M. E. Kozlov, R. H. Baughman ve S. J. Kim, «Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes,» Nature Communications, no. 3, p. 650, 2012.
  • X. Li, P. Sun, L. Fan, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng ve H. Zhu, «Multifunctional graphene woven fabrics,» Scientific Reports, no. 2, p. 395, 2012.
  • S. Park ve R. S. Ruoff, «Chemical methods for the production of graphenes,» Nature Nanotechnology, cilt 4, no. 4, pp. 271-224, 2009.
  • V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo ve A. Buasri, «Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods,» Hindawi-Advances In Materials Science and Engineering, no. 2013, p. Article ID 923403, 2013.
  • M. F. R. Hanifah, J. Jaafar, M. Aziz, A. F. Ismail, M. A. Rahman ve M. H. D. Othman, «Synthesis of graphene oxide nanosheets via modified hummers’ method and its physicochemical properties,» Jurnal Teknologi, cilt 74, no. 1, pp. 189-192, 2015.
  • W. Chen, L. Yan ve P. R. Bangal, «Chemical reduction of graphene oxide to graphene by sulfur-containing compounds,» The Journal of Physical Chemistry C., cilt 114, no. 47, pp. 19885-19890, 2010.
  • A. A. Arbuzov, P. B. Tarasov ve V. E. Muradyan, «Synthesis of few-layer graphene sheets via chemical and thermal reduction of graphite oxide,» %1 içinde Proceedings of the International Conference Nanomaterials: Applications and Properties, Sumy State Unive, Sumy, Ukraine, 2012.
  • J. Chen, B. Yao, C. Li ve G. Shi, «An improved hummers method for eco-friendly synthesis of graphene oxide,» Carbon, cilt 64, no. 2013, pp. 225-229, 2013.
  • İ. Karteri, Ş. Karataş ve F. Yakuphanoğlu, «Electrical characterization of graphene oxide and organic dielectriclayers based on thin film transistor,» Applied Surface Science, no. 318, pp. 74-78, 2014.
  • Chemistry and Chemical Analysis, Dep. of Chemistry, Faculty of Mathematics and Natural Sci., , «Laboratory of Materials,» University of Turku, FINLAND, [Çevrimiçi]. Available: www.utu.fi/en/units/sci/units/chemistry/research/mcca/PublishingImages/GO%20rGO.jpg. [Erişildi: 4 Mayıs 2016].
  • C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard ve K. Kern, «Electronic transport properties of individual chemically reduced graphene oxide sheets,» Nano Letters, cilt 7, no. 11, pp. 3499-3503, 2007.
  • C. Botas, P. A. Lvarez, P. Blanco, M. Granda, C. Blanco, R. A. Santamari, L. J. Romasanta, R. Verdejo, M. A. Lo´Pez-Manchado ve R. Menendez, «Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods,» Carbon, no. 65, pp. 156-164, 2013.
  • H. Kim, A. A. Abdala ve C. W. Macosko, «Graphene/Polymer nanocomposites,» Macromolecules, no. 43, pp. 6515-6530, 2010.
  • C. Menchaca-Campos, C. García-Pérez, I. Castañeda, M. A. García-Sánchez, R. Guardián ve J. Uruchurtu, «Nylon/Graphene oxide electrospun composite coating,» International Journal of Polymer Science, cilt Article ID 621618, 2013.
  • D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu ve J. M. Tour, «Improved synthesis of graphene oxide,» Amercan Chemical Society ACS Nano, cilt 4, no. 8, pp. 4806-4814, 2010.
  • S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali ve R. S. Ruoff, «Hydrazine-reduction of graphite-and graphene oxide,» Carbon, cilt 49, no. 9, pp. 3019-3023, 2011.
  • A. Shalaby, D. Nihtianova, P. Markov, A. D. Staneva, R. S. Iordanova ve Y. B. Dimitriev, «“Structural analysis of reduced graphene oxide by transmission electron microscopy,» Bulgarian Chemical Communications, cilt 47, no. 1, pp. 291-295, 2015.
  • S. Pei ve H. M. Cheng, «The reduction of graphene oxide,» Carbon, cilt 50, no. 9, pp. 3210-3228, 2012.
  • S. Abdolhosseinzadeh, H. Asgharzadeh ve H. S. Kim, «Fast and fully-scalable synthesis of reduced graphene oxide,» Scientific Reports, cilt 5, 2015.
  • Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong ve K. P. Loh, «Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demenstration of tunable optical limiting properties,» Chemistry of Materials, no. 21, pp. 2950-2956, 2009.
  • J. Song, X. Wang ve C. T. Chang, «Preparation and characterization of graphene oxide,» Hindawi-Journal of Nanomaterials, no. 2014, p. Artical ID 276143, 2014.
  • H. Feng, R. Cheng, X. Zhao, X. Duan ve J. Li, «A low-temperature method to produce highly reduced graphene oxide,» Nature Communications, no. 4, p. 1539, 2013.
  • D. Konios, M. M. Stylianakis, E. Stratakis ve E. Kymakis, «Dispersion behaviour of graphene oxide and reduced graphene oxide,» Journal of colloid and interface science, no. 430, pp. 108-112, 2014.
  • L. Shahriary ve A. A. Athawale, «Graphene oxide synthesized by using modified hummers approach,» Intenational Journal Of Renewable Energy And Environmental Engineering, cilt 02, no. 01, pp. 58-63, 2014.
  • Y. Gao , D. Ma , C. Wang, J. Guan ve X. Bao, «Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature,» Chemical Communications, cilt 47, no. 8, pp. 2432-2434, 2011.
  • A. C. Ferrari, «Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects,» Solid State Communications, no. 143, pp. 47-57, 2007.
  • K. H. Liao, A. Mittal, S. Bose, C. Leighton, K. A. Mkhoyan ve C. W. Mocosko, «Aqueous only route toward graphene from graphite oxide,» American Chemical Society-ACS Nano, cilt 5, no. 2, pp. 1253-1258, 2011.
  • M. Wojtoniszak, X. Chen, R. J. Kalenczuk, A. Wajde, J. Lapczuk, M. Kurzewski, M. Drozdzik, P. .. Chu ve E. Borowiak-Palen, «Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide,» Colloids and Surfaces B: Biointerfaces, no. 89, pp. 79-85, 2012.
  • X. Bajaj, T. V. Sreekumar ve K. Sen, «Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers,» Journal of Applied Polymer Science, cilt 86, no. 3, pp. 773-787, 2002.
  • İ. Tiyek ve F. Bozdoğan, «Poliakrilonitril Lif Üretiminde Koagülasyon Banyo Sıcaklığının Lif İçyapısına Etkisinin Geniş Açı X-Işınları Difraksiyonu İle İncelenmesi,» Tekstil ve Konfeksiyon, no. 2, pp. 114-120, 2008.
  • L. Erzurumluoğlu, Poli(Hekzametilen Adipamit) (Poliamid 66) esaslı karbon lifi üretimi sırasında antioksidan kullanımının termal stabilizasyon ve karbonizasyon aşamalarına etkilerinin araştırılması, yapısal ve mekanik özelliklerinin karakterize edilmesi, Kayseri: Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Erciyes Üniversitesi, 2015.
  • H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'Homme, R. Car, D. A. Saville ve I. A. Aksay, «Functionalized single graphene sheets derived from splitting graphite oxide,» The Journal of Physical Chemistry B, cilt 110, no. 17, pp. 8535-5839, 2006.
  • D. Pandey, R. Reifenberger ve R. Piner, «Scanning probe microscopy study of exfoliated oxidized graphene sheets,» Surface Science, cilt 602, no. 9, p. 1607, 2008.
  • D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway ve V. Yu, «Experimental review of graphene,» ISRN Condensed Matter Physics, no. 2012, 2012.
  • A. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov ve A. K. Geim, «The electronic properties of graphene,» Reviews of Modern Physics, cilt 81, no. 1, p. 109, 2009.
  • K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim ve H. L. Stormer, «Ultrahigh electron mobility in suspended graphene,» Solid State Communications, cilt 146, no. 9, pp. 351-355, 2008.
  • S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, T. S. Nguyen ve R. S. Ruoff, «Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,» Carbon, cilt 45, no. 7, pp. 1558-1565, 2007.
  • T. Zhou , F. Chen , K. Liu, H. Deng, Q. Zhang, J. Feng ve Q. Fu, «A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite,» Nanotechnology, no. 22, p. 045704, 2011.
There are 59 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

İsmail Tiyek

Utkay Dönmez

Behzat Yıldırım

Mehmet Hakkı Alma

Mehmet Sabri Ersoy

Şükrü Karataş

Mustafa Yazıcı

Publication Date August 1, 2016
Submission Date May 6, 2016
Acceptance Date May 31, 2016
Published in Issue Year 2016 Volume: 20 Issue: 2

Cite

APA Tiyek, İ., Dönmez, U., Yıldırım, B., Alma, M. H., et al. (2016). Synthesis of reduced graphene oxide by chemical method and its characterization. Sakarya University Journal of Science, 20(2), 349-357. https://doi.org/10.16984/saufenbilder.29009
AMA Tiyek İ, Dönmez U, Yıldırım B, Alma MH, Ersoy MS, Karataş Ş, Yazıcı M. Synthesis of reduced graphene oxide by chemical method and its characterization. SAUJS. August 2016;20(2):349-357. doi:10.16984/saufenbilder.29009
Chicago Tiyek, İsmail, Utkay Dönmez, Behzat Yıldırım, Mehmet Hakkı Alma, Mehmet Sabri Ersoy, Şükrü Karataş, and Mustafa Yazıcı. “Synthesis of Reduced Graphene Oxide by Chemical Method and Its Characterization”. Sakarya University Journal of Science 20, no. 2 (August 2016): 349-57. https://doi.org/10.16984/saufenbilder.29009.
EndNote Tiyek İ, Dönmez U, Yıldırım B, Alma MH, Ersoy MS, Karataş Ş, Yazıcı M (August 1, 2016) Synthesis of reduced graphene oxide by chemical method and its characterization. Sakarya University Journal of Science 20 2 349–357.
IEEE İ. Tiyek, U. Dönmez, B. Yıldırım, M. H. Alma, M. S. Ersoy, Ş. Karataş, and M. Yazıcı, “Synthesis of reduced graphene oxide by chemical method and its characterization”, SAUJS, vol. 20, no. 2, pp. 349–357, 2016, doi: 10.16984/saufenbilder.29009.
ISNAD Tiyek, İsmail et al. “Synthesis of Reduced Graphene Oxide by Chemical Method and Its Characterization”. Sakarya University Journal of Science 20/2 (August 2016), 349-357. https://doi.org/10.16984/saufenbilder.29009.
JAMA Tiyek İ, Dönmez U, Yıldırım B, Alma MH, Ersoy MS, Karataş Ş, Yazıcı M. Synthesis of reduced graphene oxide by chemical method and its characterization. SAUJS. 2016;20:349–357.
MLA Tiyek, İsmail et al. “Synthesis of Reduced Graphene Oxide by Chemical Method and Its Characterization”. Sakarya University Journal of Science, vol. 20, no. 2, 2016, pp. 349-57, doi:10.16984/saufenbilder.29009.
Vancouver Tiyek İ, Dönmez U, Yıldırım B, Alma MH, Ersoy MS, Karataş Ş, Yazıcı M. Synthesis of reduced graphene oxide by chemical method and its characterization. SAUJS. 2016;20(2):349-57.

Cited By














GREEN REDUCTION OF GRAPHENE OXIDE BY USING KOMBUCHA TEA
Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering
Sevil CETINKAYA GÜRER
https://doi.org/10.18038/estubtda.630211