Research Article
BibTex RIS Cite

The Production and characterization of tin (II) oxide composite anode electrodes for lithium ion batteries

Year 2017, Volume: 21 Issue: 2, 150 - 156, 01.04.2017
https://doi.org/10.16984/saufenbilder.296995

Abstract

In this study, the core component
of the composite, tin (II) oxide powders synthesized through a facile chemical
reduction methods for Li-ion batteries. As the shell structure, surfaces of the
as-synthesized tin (II) oxide particles were coated with carbon through
microwave assisted carburization process. The surface morphologies and phase
components of the as-synthesized tin (II) oxide/carbon composites were
investigated via scanning electron microscopy and X-ray diffraction methods,
respectively. CR2016 type coin cells were prepared by using tin (II)
oxide/carbon composite powders and electrochemical tests were performed at room
temperature via 8-channel MTI BST8‒MA electrochemical test station between 10
mV and 2.5 V potential range by applying fixed 1 C state of charge conditions.
The results have shown that tin (II) oxide/carbon composite structure have
significantly improved the specific capacities to 396 mAh g-1 after 100 cycles.

References

  • [1] C. Chen and Y. Tseng, “Cross-interaction in Cu/Sn/Co/Sn/Ni and Cu/Sn–Co/Co/Sn– Co/Ni couples,” J. Electron. Mater., vol. 44, no. 3, pp. 1021-1027, Mar. 2015.
  • [2] X. Li, Y. Zhong, M. Cai, M. Balogh, D. Wang, Y. Zhang, R. Li and X. Sun, “Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries,” Electrochim. Acta, vol. 89, no. 1, pp. 387-393, Feb. 2013.
  • [3] K. Wang, D. Gan, K. Hsiel and S. Y. Chiou, “The microstructure of η′-Cu6Sn5 and its orientation relationships with Cu in the early stage of growth,” Thin Solid Films, vol. 518, no. 6, pp. 1667-1674, Jan. 2010.
  • [4] A. Yamano, M. Morishita, H. Yamauchi, T. Nagakane, M. Ohji, A. Sakamoto, M. Yanagida and T. Sakai, “Electrochemical and safety performance of Li pre-doping free cell using tin-phosphate glass-silicon composite anode,” J. Power Sources, vol. 292, no. 1, pp. 31-38, Oct. 2015.
  • [5] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material,” Science, vol. 276, no. 5317, pp. 1395-1397, May 1997.
  • [6] J H. Giefers, F. Porsch and W. G., “Kinetics of the disproportionation of SnO,” Solid State Ionics, vol. 176, no. 1-2, p. 199–207, Jan. 2005.
  • [7] J. Chouvin, C. Branci, J. Sarradin, J. Fourcade, J. Jumas, B. Simon and P. Biensan, “Lithium intercalation in tin oxide,” J. Power Sources, vol. 1, no. 1, p. 277–281, Sept. 1999.
  • [8] I. Courtney and J. Dahn, “Electrochemical and In Situ X‐ray diffraction studies of the reaction of lithium with tin oxide composites,” J. Electrochem. Soc., vol. 144, no. 6, pp. 2045-2052, Nov. 1997.
  • [9] D.-S. Wu, C.-Y. Han, S.-Y. Wang, N.-L. Wu and I. Rusakova, “Microwave assisted solution synthesis of SnO nanocrystallites,” Mater. Lett., vol. 53, no. 3, p. 155–159, Mar. 2002.
  • [10] F. Kazumi, N. Chizuko, M. Keizo and M. Shunmei, “Preparation of Tin(II) Oxide by a homogeneous precipitation method,” B. Chem. Soc. Jpn., vol. 63, no. 9, pp. 2718-2720, June 2006.
  • [11] V. Jimenez, A. E. J. Gonzalez-Elipe, A. Justo and A. Fernandez, “Synthesis of SnO and SnO2 nancrystalline powders by the gas phase condensation method,” Sensor. and Actuator., vol. 31, no. 1-2, pp. 29-32, Feb. 1992.
  • [12] K. Amitabh and R. Rustum, “RESA- A wholly new process for fine oxide powder preparation,” J. Mater. Res., vol. 3, no. 6, pp. 1373-1377, Dec. 1988.
  • [13] F. J. E. Pires, R. Savu, M. Zaghate, E. Longo and J. Varela, “Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders,” Mater. Lett., vol. 62, no. 2, pp. 239-242, Jan. 2008.
  • [14] H. Avila and J. Rodríguez-Páez, “Solvent effects in the synthesis process of tin oxide,” J. Non-Cryst. Solids, vol. 355, no. 14-15, pp. 885-890, June 2009.
  • [15] H. Yamaguchi, S. Nakanishi, H. Iba and T. Itoh, “Amorphous polymeric anode materials from poly(acrylic acid) and tin(II) oxide for lithium ion batteries,” J. Power Sources, vol. 275, no. 1, pp. 1-5, Feb. 2015.
  • [16] Lu, C. Ma, J. Alvarado, T. Kidera, N. Dimov, Y. S. Meng and S. Okada, “Electrochemical properties of tin oxide anodes for sodium-ion,” J. Power Sources, vol. 284, no. 1, pp. 287-295, June 2015.
  • [17] M. Shimizu, H. Usui and H. Sakaguchi, “Electrochemical Na-insertion/extraction properties of SnO thick-film electrodes prepared by gas-deposition,” J. Power Sources, vol. 248, no. 1, p. 378–382, Feb. 2014.
  • [18] L. Bardini, A. Pappacena, M. Dominguez-Escalante, J. Llorca, M. Boaro and A. Trovarelli, “Structural and electrocatalytic properties of molten core Sn@SnOx nanoparticles on ceria,” Appl. Catal. B-Environ., vol. 197, no. 1, p. 254–261, Nov. 2016.
  • [19] B. Huang, X. Li, Y. Pei, S. Li, X. Cao, R. Massé and G. Cao, “Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability,” Small, vol. 12, no. 14, pp. 1645-1955, Feb. 2016.
  • [20] G. Yang, A. Frenkel, D. Su and X. Teng, “Enhanced electrokinetics of C− C bond splitting during ethanol oxidation by using a Pt/Rh/Sn catalyst with a partially oxidized Pt and Rh core and a SnO2 shell,” Chem. Cat. Chem., vol. 8, no. 18, p. 2876–2880, 2016.
  • [21] M. O. Guler, A. Akbulut, T. Cetinkaya, M. Uysal and H. Akbulut, “Improvement of electrochemical and structural properties of LiMn2O4 spinel based electrode materials for Li-ion batteries,” Int. J. Hydrogen Energ., vol. 39, no. 36, pp. 21447-21460, Dec. 2014.
  • [22] M. O. Guler, T. Cetinkaya, U. Tocoglu and H. Akbulut, “Electrochemical performance of MWCNT reinforced ZnO anodes for Li-ion batteries,” Microelectron. Eng., vol. 118, no. 1, pp. 54-60, Apr. 2014.
  • [23] U. Tocoglu, O. Cevher, M. O. Guler and H. Akbulut, “Core–shell tin-multi walled carbon nanotube composite anodes for lithium ion batteries,” Int. J. Hydrogen Energ., vol. 39, no. 36, p. 21386–21390, Dec. 2014.
  • [24] U. Tocoglu, O. Cevher, M. O. Guler and H. Akbulut, “Coaxial silicon/multi-walled carbon nanotube nanocomposite anodes for long cycle life lithium-ion batteries,” Appl. Surf. Sci., vol. 305, no. 1, p. 402–411, June 2014.

Lityum iyon piller için kalay (II) oksit kompozit anot elektrotlarının üretimi ve karakterizasyonu

Year 2017, Volume: 21 Issue: 2, 150 - 156, 01.04.2017
https://doi.org/10.16984/saufenbilder.296995

Abstract

 Bu çalışmada
Li-iyon piller için uyumlu çekirdek olarak kalay (II) oksit anotlar kimyasal
indirgeme yöntemi ile sentezlenmiştir. Karbon esaslı kabuk sentezi için
mikrodalga destekli karbürizasyon yöntemi kullanılmış ve SnO tozlarının
yüzeylerinde ince amorf bir karbon tabakası elde edilmiştir. Üretilen kalay
(II) oksit/karbon kompozit elektrotların yüzey morfolojileri Taramalı
Elektron Mikroskobu (SEM) ile analiz edilmiş ve yapıların faz bileşenleri
X-Işınları Difraktometresi (XRD) ile karakterize edilmiştir. Üretilen kalay
(II) oksit/karbon kompozit tozları kullanılarak hazırlanan elektrotlar ile
CR2016 test hücreleri hazırlanmış ve elektrotların elektrokimyasal
performansı MTI BST8‒MA 8 kanallı pil test ünitesinde, oda sıcaklığında 10 mV
ve 2,5 V arasında sabit 1C şarj/deşarj şartlarında akım verilerek test
edilmiştir. Sonuç olarak, kalay (II) oksit/karbon kompozit elektrot
malzemeleri ile 100 çevrim sonrasında 396 mAh g
-1 deşarj
kapasitesi elde edilmiştir.

References

  • [1] C. Chen and Y. Tseng, “Cross-interaction in Cu/Sn/Co/Sn/Ni and Cu/Sn–Co/Co/Sn– Co/Ni couples,” J. Electron. Mater., vol. 44, no. 3, pp. 1021-1027, Mar. 2015.
  • [2] X. Li, Y. Zhong, M. Cai, M. Balogh, D. Wang, Y. Zhang, R. Li and X. Sun, “Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries,” Electrochim. Acta, vol. 89, no. 1, pp. 387-393, Feb. 2013.
  • [3] K. Wang, D. Gan, K. Hsiel and S. Y. Chiou, “The microstructure of η′-Cu6Sn5 and its orientation relationships with Cu in the early stage of growth,” Thin Solid Films, vol. 518, no. 6, pp. 1667-1674, Jan. 2010.
  • [4] A. Yamano, M. Morishita, H. Yamauchi, T. Nagakane, M. Ohji, A. Sakamoto, M. Yanagida and T. Sakai, “Electrochemical and safety performance of Li pre-doping free cell using tin-phosphate glass-silicon composite anode,” J. Power Sources, vol. 292, no. 1, pp. 31-38, Oct. 2015.
  • [5] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material,” Science, vol. 276, no. 5317, pp. 1395-1397, May 1997.
  • [6] J H. Giefers, F. Porsch and W. G., “Kinetics of the disproportionation of SnO,” Solid State Ionics, vol. 176, no. 1-2, p. 199–207, Jan. 2005.
  • [7] J. Chouvin, C. Branci, J. Sarradin, J. Fourcade, J. Jumas, B. Simon and P. Biensan, “Lithium intercalation in tin oxide,” J. Power Sources, vol. 1, no. 1, p. 277–281, Sept. 1999.
  • [8] I. Courtney and J. Dahn, “Electrochemical and In Situ X‐ray diffraction studies of the reaction of lithium with tin oxide composites,” J. Electrochem. Soc., vol. 144, no. 6, pp. 2045-2052, Nov. 1997.
  • [9] D.-S. Wu, C.-Y. Han, S.-Y. Wang, N.-L. Wu and I. Rusakova, “Microwave assisted solution synthesis of SnO nanocrystallites,” Mater. Lett., vol. 53, no. 3, p. 155–159, Mar. 2002.
  • [10] F. Kazumi, N. Chizuko, M. Keizo and M. Shunmei, “Preparation of Tin(II) Oxide by a homogeneous precipitation method,” B. Chem. Soc. Jpn., vol. 63, no. 9, pp. 2718-2720, June 2006.
  • [11] V. Jimenez, A. E. J. Gonzalez-Elipe, A. Justo and A. Fernandez, “Synthesis of SnO and SnO2 nancrystalline powders by the gas phase condensation method,” Sensor. and Actuator., vol. 31, no. 1-2, pp. 29-32, Feb. 1992.
  • [12] K. Amitabh and R. Rustum, “RESA- A wholly new process for fine oxide powder preparation,” J. Mater. Res., vol. 3, no. 6, pp. 1373-1377, Dec. 1988.
  • [13] F. J. E. Pires, R. Savu, M. Zaghate, E. Longo and J. Varela, “Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders,” Mater. Lett., vol. 62, no. 2, pp. 239-242, Jan. 2008.
  • [14] H. Avila and J. Rodríguez-Páez, “Solvent effects in the synthesis process of tin oxide,” J. Non-Cryst. Solids, vol. 355, no. 14-15, pp. 885-890, June 2009.
  • [15] H. Yamaguchi, S. Nakanishi, H. Iba and T. Itoh, “Amorphous polymeric anode materials from poly(acrylic acid) and tin(II) oxide for lithium ion batteries,” J. Power Sources, vol. 275, no. 1, pp. 1-5, Feb. 2015.
  • [16] Lu, C. Ma, J. Alvarado, T. Kidera, N. Dimov, Y. S. Meng and S. Okada, “Electrochemical properties of tin oxide anodes for sodium-ion,” J. Power Sources, vol. 284, no. 1, pp. 287-295, June 2015.
  • [17] M. Shimizu, H. Usui and H. Sakaguchi, “Electrochemical Na-insertion/extraction properties of SnO thick-film electrodes prepared by gas-deposition,” J. Power Sources, vol. 248, no. 1, p. 378–382, Feb. 2014.
  • [18] L. Bardini, A. Pappacena, M. Dominguez-Escalante, J. Llorca, M. Boaro and A. Trovarelli, “Structural and electrocatalytic properties of molten core Sn@SnOx nanoparticles on ceria,” Appl. Catal. B-Environ., vol. 197, no. 1, p. 254–261, Nov. 2016.
  • [19] B. Huang, X. Li, Y. Pei, S. Li, X. Cao, R. Massé and G. Cao, “Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability,” Small, vol. 12, no. 14, pp. 1645-1955, Feb. 2016.
  • [20] G. Yang, A. Frenkel, D. Su and X. Teng, “Enhanced electrokinetics of C− C bond splitting during ethanol oxidation by using a Pt/Rh/Sn catalyst with a partially oxidized Pt and Rh core and a SnO2 shell,” Chem. Cat. Chem., vol. 8, no. 18, p. 2876–2880, 2016.
  • [21] M. O. Guler, A. Akbulut, T. Cetinkaya, M. Uysal and H. Akbulut, “Improvement of electrochemical and structural properties of LiMn2O4 spinel based electrode materials for Li-ion batteries,” Int. J. Hydrogen Energ., vol. 39, no. 36, pp. 21447-21460, Dec. 2014.
  • [22] M. O. Guler, T. Cetinkaya, U. Tocoglu and H. Akbulut, “Electrochemical performance of MWCNT reinforced ZnO anodes for Li-ion batteries,” Microelectron. Eng., vol. 118, no. 1, pp. 54-60, Apr. 2014.
  • [23] U. Tocoglu, O. Cevher, M. O. Guler and H. Akbulut, “Core–shell tin-multi walled carbon nanotube composite anodes for lithium ion batteries,” Int. J. Hydrogen Energ., vol. 39, no. 36, p. 21386–21390, Dec. 2014.
  • [24] U. Tocoglu, O. Cevher, M. O. Guler and H. Akbulut, “Coaxial silicon/multi-walled carbon nanotube nanocomposite anodes for long cycle life lithium-ion batteries,” Appl. Surf. Sci., vol. 305, no. 1, p. 402–411, June 2014.
There are 24 citations in total.

Details

Subjects Material Production Technologies
Journal Section Research Articles
Authors

Mehmet Oğuz Güler

Publication Date April 1, 2017
Submission Date October 31, 2016
Acceptance Date November 16, 2016
Published in Issue Year 2017 Volume: 21 Issue: 2

Cite

APA Güler, M. O. (2017). The Production and characterization of tin (II) oxide composite anode electrodes for lithium ion batteries. Sakarya University Journal of Science, 21(2), 150-156. https://doi.org/10.16984/saufenbilder.296995
AMA Güler MO. The Production and characterization of tin (II) oxide composite anode electrodes for lithium ion batteries. SAUJS. April 2017;21(2):150-156. doi:10.16984/saufenbilder.296995
Chicago Güler, Mehmet Oğuz. “The Production and Characterization of Tin (II) Oxide Composite Anode Electrodes for Lithium Ion Batteries”. Sakarya University Journal of Science 21, no. 2 (April 2017): 150-56. https://doi.org/10.16984/saufenbilder.296995.
EndNote Güler MO (April 1, 2017) The Production and characterization of tin (II) oxide composite anode electrodes for lithium ion batteries. Sakarya University Journal of Science 21 2 150–156.
IEEE M. O. Güler, “The Production and characterization of tin (II) oxide composite anode electrodes for lithium ion batteries”, SAUJS, vol. 21, no. 2, pp. 150–156, 2017, doi: 10.16984/saufenbilder.296995.
ISNAD Güler, Mehmet Oğuz. “The Production and Characterization of Tin (II) Oxide Composite Anode Electrodes for Lithium Ion Batteries”. Sakarya University Journal of Science 21/2 (April 2017), 150-156. https://doi.org/10.16984/saufenbilder.296995.
JAMA Güler MO. The Production and characterization of tin (II) oxide composite anode electrodes for lithium ion batteries. SAUJS. 2017;21:150–156.
MLA Güler, Mehmet Oğuz. “The Production and Characterization of Tin (II) Oxide Composite Anode Electrodes for Lithium Ion Batteries”. Sakarya University Journal of Science, vol. 21, no. 2, 2017, pp. 150-6, doi:10.16984/saufenbilder.296995.
Vancouver Güler MO. The Production and characterization of tin (II) oxide composite anode electrodes for lithium ion batteries. SAUJS. 2017;21(2):150-6.