Research Article
BibTex RIS Cite

The evolution of removal mechanism of chlortetracycline by nanoscale zero valent iron from aqueous solution

Year 2017, Volume: 21 Issue: 5, 1000 - 1007, 01.10.2017
https://doi.org/10.16984/saufenbilder.270688

Abstract

In this study,
the removal mechanism of chlortetracycline (CTC) by nanoscale zero valent iron
(nZVI) from the aqueous solutions. Experimental variables such as solution pH,
nZVI dosage, contact time and reaction temprature were systematically studied
and the degradation products of CTC were determined at optimum operating
conditions which provided to maximum CTC removal percentages. Adsorption
behavior depended pH and maximum removal of CTC occured at pH 6. The optimum
dosage was 0,4 g/L because there was no significant removal efficiency when
nZVI dosage was between 0,4-0,6 g/L. Adsorption kinetics exhibited that
equilibrium was reached within 2 h following the pseudo-second order model.

References

  • [1] N. Kemper (2008), “Veterinary antibiotics in the aquatic and terrestrial environment”, Ecological Indicators, Cilt 8, pp. 1-13.
  • [2] L. A. Mitscher (1978), “The Chemistry of the Tetracycline Antibiotics”, Marcel Decker Inc., New York, Cilt 9, pp. 330.
  • [3 ]A. K. Sarmah, M. R. Meyer, A. B. A. Boxall (2006), “A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment”, Cemosphere, Cilt 65, pp. 725-759.
  • [4] B. H. Sorensen, N. Nielsen, S. N. Nielsen, P. F. Lanzky, Ingerslev, F., H. C. Holten Luzthoft, S.E. Jorgensen (1998), “Occurrence, fate and effects of pharmaceutical substances in the environment- a review”, Chemosphere, Cilt36, pp. 357-393.
  • [5] H. Chen, C. H. Huang (2010), “Adsorption and transformation of tetracycline antibiotics with aluminum oxide, Chemosphere”, Cilt 79, pp. 779-785.
  • [6] H. Sorensen, B. Nielsen, G. Sengeleov, J. Tjornelund (2002), “Toxicity of teracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria”, Achieved Environmental Contamination Toxicology,Cilt 44, pp.7-16.
  • [7] W. X. Zhang (2003), “Nanoscale iron particles for environmental remediation: an overview”, J. Nanopart. Res., Cilt 5, pp. 323-332.
  • [8] W. X. Zhang (2005), “Nanoscale environmental science and technology: challenges and Opportunities”, Environ. Sci. Technol., Cilt 39, pp. 94A-95A.
  • [9] J. K. Gotpagar, E. A. Grulke, E. A. Tsank, D. Bhattacharyya (1997), “Reductive dehalogenation of trichloroethylene using zero-valent iron”, Reductive dehalogenation of trichloroethylene using zero-valent iron”, Environ. Progr., Cilt 6, pp. 137-143.
  • [10} F. Li, C. Vipulanandan, K. K. Mohanty (2003), “Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene”, Coll. Surf. A., Cilt 223, pp. 103-112.
  • [11] M. Seifrtova, L. Novakova, C. Lino, A. Pena, P. Solich (2009), “An overview of analytical methodologies for the determination of antibiotics in environmental waters ”, Analytica Chimica Acta., Cilt 649, pp. 158-179.
  • [12] C. Wang, W. Zhang (1997), “Nanoscale metal particles for dechlorination of PCE and PCBs”, Environ. Sci. Technol., Cilt 35, pp. 4922.
  • [13] Y. H. Shih, Y. T. Tai (2010), “ Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles”, Chemosphere, Cilt 78, pp. 1200-1206.
  • [14] T. Phenrat, N. Saleh, K. Sirk, R. D. Tilton, G. V. Lowry (2007), “Aggregation and sedimentation of aqueous nanoscale zero valent dispersion”, Environ. Sci.Technol., Cilt 41, pp. 284-290.

Nano boyutlu sıfır değerlikli demir ile sulu ortamlarda klortetrasiklin giderim mekanizmasının incelenmesi

Year 2017, Volume: 21 Issue: 5, 1000 - 1007, 01.10.2017
https://doi.org/10.16984/saufenbilder.270688

Abstract

Bu çalışmada
kimyasal indirgeme yöntemi ile hazırlanan nano ölçekli sıfır değerlikli demir
(nZVI) ile klortetrasiklinin (CTC) sulu ortamlardaki giderim mekanizması
incelenmiştir. Çözelti pH’ı, nZVI dozajı, temas süresi ve reaksiyon sıcaklığı
sistematik olarak incelenmiş ve maksimum klortetrasiklin gideriminin
gerçekleştiği optimum işletme şartlarında klortetrasiklin parçalanma ürünleri
belirlenmiştir. Adsorpsiyon davranışının pH’a bağlı olduğu tespit edilmiş  ve klortetrasiklinin maksimum giderim verimi
pH 6’ da gerçekleşmiştir. 0,4-0,6 g/L aralığındaki nZVI dozajlarında giderim
veriminde önemli değişiklik gözlenmediği için optimum dozaj 0,4 g/L olarak
belirlenmiştir. Adsorpsiyon kinetiğinin 2 saat içerisinde dengeye ulaştığı ve
yalancı ikinci dereceden hız modeline uyduğu belirlenmiştir.

References

  • [1] N. Kemper (2008), “Veterinary antibiotics in the aquatic and terrestrial environment”, Ecological Indicators, Cilt 8, pp. 1-13.
  • [2] L. A. Mitscher (1978), “The Chemistry of the Tetracycline Antibiotics”, Marcel Decker Inc., New York, Cilt 9, pp. 330.
  • [3 ]A. K. Sarmah, M. R. Meyer, A. B. A. Boxall (2006), “A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment”, Cemosphere, Cilt 65, pp. 725-759.
  • [4] B. H. Sorensen, N. Nielsen, S. N. Nielsen, P. F. Lanzky, Ingerslev, F., H. C. Holten Luzthoft, S.E. Jorgensen (1998), “Occurrence, fate and effects of pharmaceutical substances in the environment- a review”, Chemosphere, Cilt36, pp. 357-393.
  • [5] H. Chen, C. H. Huang (2010), “Adsorption and transformation of tetracycline antibiotics with aluminum oxide, Chemosphere”, Cilt 79, pp. 779-785.
  • [6] H. Sorensen, B. Nielsen, G. Sengeleov, J. Tjornelund (2002), “Toxicity of teracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria”, Achieved Environmental Contamination Toxicology,Cilt 44, pp.7-16.
  • [7] W. X. Zhang (2003), “Nanoscale iron particles for environmental remediation: an overview”, J. Nanopart. Res., Cilt 5, pp. 323-332.
  • [8] W. X. Zhang (2005), “Nanoscale environmental science and technology: challenges and Opportunities”, Environ. Sci. Technol., Cilt 39, pp. 94A-95A.
  • [9] J. K. Gotpagar, E. A. Grulke, E. A. Tsank, D. Bhattacharyya (1997), “Reductive dehalogenation of trichloroethylene using zero-valent iron”, Reductive dehalogenation of trichloroethylene using zero-valent iron”, Environ. Progr., Cilt 6, pp. 137-143.
  • [10} F. Li, C. Vipulanandan, K. K. Mohanty (2003), “Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene”, Coll. Surf. A., Cilt 223, pp. 103-112.
  • [11] M. Seifrtova, L. Novakova, C. Lino, A. Pena, P. Solich (2009), “An overview of analytical methodologies for the determination of antibiotics in environmental waters ”, Analytica Chimica Acta., Cilt 649, pp. 158-179.
  • [12] C. Wang, W. Zhang (1997), “Nanoscale metal particles for dechlorination of PCE and PCBs”, Environ. Sci. Technol., Cilt 35, pp. 4922.
  • [13] Y. H. Shih, Y. T. Tai (2010), “ Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles”, Chemosphere, Cilt 78, pp. 1200-1206.
  • [14] T. Phenrat, N. Saleh, K. Sirk, R. D. Tilton, G. V. Lowry (2007), “Aggregation and sedimentation of aqueous nanoscale zero valent dispersion”, Environ. Sci.Technol., Cilt 41, pp. 284-290.
There are 14 citations in total.

Details

Subjects Environmental Sciences
Journal Section Research Articles
Authors

Hande Türk

Özge Hanay This is me

Publication Date October 1, 2017
Submission Date December 1, 2016
Acceptance Date July 1, 2017
Published in Issue Year 2017 Volume: 21 Issue: 5

Cite

APA Türk, H., & Hanay, Ö. (2017). The evolution of removal mechanism of chlortetracycline by nanoscale zero valent iron from aqueous solution. Sakarya University Journal of Science, 21(5), 1000-1007. https://doi.org/10.16984/saufenbilder.270688
AMA Türk H, Hanay Ö. The evolution of removal mechanism of chlortetracycline by nanoscale zero valent iron from aqueous solution. SAUJS. October 2017;21(5):1000-1007. doi:10.16984/saufenbilder.270688
Chicago Türk, Hande, and Özge Hanay. “The Evolution of Removal Mechanism of Chlortetracycline by Nanoscale Zero Valent Iron from Aqueous Solution”. Sakarya University Journal of Science 21, no. 5 (October 2017): 1000-1007. https://doi.org/10.16984/saufenbilder.270688.
EndNote Türk H, Hanay Ö (October 1, 2017) The evolution of removal mechanism of chlortetracycline by nanoscale zero valent iron from aqueous solution. Sakarya University Journal of Science 21 5 1000–1007.
IEEE H. Türk and Ö. Hanay, “The evolution of removal mechanism of chlortetracycline by nanoscale zero valent iron from aqueous solution”, SAUJS, vol. 21, no. 5, pp. 1000–1007, 2017, doi: 10.16984/saufenbilder.270688.
ISNAD Türk, Hande - Hanay, Özge. “The Evolution of Removal Mechanism of Chlortetracycline by Nanoscale Zero Valent Iron from Aqueous Solution”. Sakarya University Journal of Science 21/5 (October 2017), 1000-1007. https://doi.org/10.16984/saufenbilder.270688.
JAMA Türk H, Hanay Ö. The evolution of removal mechanism of chlortetracycline by nanoscale zero valent iron from aqueous solution. SAUJS. 2017;21:1000–1007.
MLA Türk, Hande and Özge Hanay. “The Evolution of Removal Mechanism of Chlortetracycline by Nanoscale Zero Valent Iron from Aqueous Solution”. Sakarya University Journal of Science, vol. 21, no. 5, 2017, pp. 1000-7, doi:10.16984/saufenbilder.270688.
Vancouver Türk H, Hanay Ö. The evolution of removal mechanism of chlortetracycline by nanoscale zero valent iron from aqueous solution. SAUJS. 2017;21(5):1000-7.