Research Article
BibTex RIS Cite

Designing of 2-DOF PID control algorithm for magnetic levitation systems

Year 2018, Volume: 22 Issue: 1, 16 - 23, 01.02.2018
https://doi.org/10.16984/saufenbilder.293282

Abstract

In this study, two degree of freedom (2-DOF)
PID controllers are designed and compared to the conventional PID controller,
which is compatible with the magnetic ball levitation system. This system is a
subject of many control problems, because it has a open loop unstable and
nonlinear second order structure. The system is modeled based on physical
parameters and its linearized around the appropriate equilibrium point via
Tylor series expansion. The PID control parameters are determined by the root
placement method which is a suitable method for the second order systems and
the same parameters are used for the 2-DOF PID. Since this proposed control
algorithm has feedforward gain parameters, it is possible to improve the
transient state performance according to the traditional PID controller. Due to
the use of the conventional PID controller, there are some zeros in the
transfer function of the system. It can be seen that proposed technique could
prevent the overshoots caused by these zeros.

References

  • [1] A. Ghosh, T. Rakesh Krishnan, P. Tejaswy, A. Mandal, J. K. Pradhan, and S. Ranasingh, “Design and implementation of a 2-DOF PID compensation for magnetic levitation systems,” ISA Trans., vol. 53, no. 4, pp. 1216–1222, 2014.
  • [2] S.-Y. Fan, C.-W. Chuang, and C.-C. Feng, “Apply Novel Grey Model Integral Variable Structure Control to Air-Ball-Suspension System,” Asian J. Control, vol. 18, no. 4, pp. 1359–1364, 2016.
  • [3] E. M. Junaid, E. Sadaqat, and U. Rehman, “Observer Based Controller for Magnetic Levitation System,” vol. 4, no. 2, pp. 29–33, 2015.
  • [4] T. H. S. Li, C. L. Kuo, and N. R. Guo, “Design of an EP-based fuzzy sliding-mode control for a magnetic ball suspension system,” Chaos, Solitons and Fractals, vol. 33, no. 5, pp. 1523–1531, 2007.
  • [5] M. Araki and H. Taguchi, “Two-degree-of-freedom PID controllers,” Int. J. Control Autom. Syst., vol. 1, no. 4, pp. 401–411, 2003.
  • [6] M. K. Çelik, «Bir Ve İki Serbestlik Dereceli Süreç Kontrol Yapıları İçin Tasarım Yöntemleri,Yüksek Lisans Tezi» İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007.
  • [7] Feedback Instruments Limited UK, “Magnetic Levitation Control Experiments,” vol. 44, no. 1160, 1892.
  • [8] Åström, K., ve Hägglund, T. (2001). The future of PID control. Control Engineering Practice, 9(11), Instrumentation, Systems, and Automation Society, 1163–1175
  • [9] R. Vilanova and P. Balaguer, “ISA-PID Controller Tuning : A combined min-max / ISE approach,” pp. 2956–2961, 2006.
  • [10] S. Skogestad and I. Postlethwaite, “Multivariable feedback control: analysis and design,” Int. J. Robust Nonlinear Control, vol. 8, no. 14, p. 575, 2005.

Manyetik askılama sistemi için 2 serbestlik dereceli PID kontrolcü tasarımı

Year 2018, Volume: 22 Issue: 1, 16 - 23, 01.02.2018
https://doi.org/10.16984/saufenbilder.293282

Abstract

Bu çalışmada,
açık çevrim, kararsız ve lineer olmayan ikinci dereceden bir yapıda olduğu için
bir birçok kontrol problemine konu olan manyetik top askılama sistemine uygun 2
Serbestlik Dereceli PID kontrolcüsü tasarlanmış ve geleneksel PID
kontrolcüsüyle kıyaslanmıştır. Sistem fiziksel parametreler baz alınarak
modellenmiş ve uygun birer denge noktası civarında Tylor serisine açılarak
lineerleştirilmiştir. PID kontrol parametreleri, ikinci dereceden sistemler
için uygun bir yöntem olan kök yerleştirme metoduyla belirlenmiş ve aynı
parametreler 2 serbestlik dereceli PID için de kullanılmıştır. Önerilen bu
kontrol algoritması ileri yol kazanç parametrelerine sahip olduğu için
geleneksel PID kontrolcüsüne göre geçici hal performansının daha da
iyileştirilmesi mümkün olmaktadır. Geleneksel kontrolcüden kaynaklanan sisteme
ait transfer fonksiyonundaki sıfırların sebep olduğu aşımların önüne
geçilmiştir.

References

  • [1] A. Ghosh, T. Rakesh Krishnan, P. Tejaswy, A. Mandal, J. K. Pradhan, and S. Ranasingh, “Design and implementation of a 2-DOF PID compensation for magnetic levitation systems,” ISA Trans., vol. 53, no. 4, pp. 1216–1222, 2014.
  • [2] S.-Y. Fan, C.-W. Chuang, and C.-C. Feng, “Apply Novel Grey Model Integral Variable Structure Control to Air-Ball-Suspension System,” Asian J. Control, vol. 18, no. 4, pp. 1359–1364, 2016.
  • [3] E. M. Junaid, E. Sadaqat, and U. Rehman, “Observer Based Controller for Magnetic Levitation System,” vol. 4, no. 2, pp. 29–33, 2015.
  • [4] T. H. S. Li, C. L. Kuo, and N. R. Guo, “Design of an EP-based fuzzy sliding-mode control for a magnetic ball suspension system,” Chaos, Solitons and Fractals, vol. 33, no. 5, pp. 1523–1531, 2007.
  • [5] M. Araki and H. Taguchi, “Two-degree-of-freedom PID controllers,” Int. J. Control Autom. Syst., vol. 1, no. 4, pp. 401–411, 2003.
  • [6] M. K. Çelik, «Bir Ve İki Serbestlik Dereceli Süreç Kontrol Yapıları İçin Tasarım Yöntemleri,Yüksek Lisans Tezi» İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007.
  • [7] Feedback Instruments Limited UK, “Magnetic Levitation Control Experiments,” vol. 44, no. 1160, 1892.
  • [8] Åström, K., ve Hägglund, T. (2001). The future of PID control. Control Engineering Practice, 9(11), Instrumentation, Systems, and Automation Society, 1163–1175
  • [9] R. Vilanova and P. Balaguer, “ISA-PID Controller Tuning : A combined min-max / ISE approach,” pp. 2956–2961, 2006.
  • [10] S. Skogestad and I. Postlethwaite, “Multivariable feedback control: analysis and design,” Int. J. Robust Nonlinear Control, vol. 8, no. 14, p. 575, 2005.
There are 10 citations in total.

Details

Subjects Electrical Engineering
Journal Section Research Articles
Authors

Dinçer Maden

İrfan Yazıcı

Publication Date February 1, 2018
Submission Date February 21, 2017
Acceptance Date July 25, 2017
Published in Issue Year 2018 Volume: 22 Issue: 1

Cite

APA Maden, D., & Yazıcı, İ. (2018). Designing of 2-DOF PID control algorithm for magnetic levitation systems. Sakarya University Journal of Science, 22(1), 16-23. https://doi.org/10.16984/saufenbilder.293282
AMA Maden D, Yazıcı İ. Designing of 2-DOF PID control algorithm for magnetic levitation systems. SAUJS. February 2018;22(1):16-23. doi:10.16984/saufenbilder.293282
Chicago Maden, Dinçer, and İrfan Yazıcı. “Designing of 2-DOF PID Control Algorithm for Magnetic Levitation Systems”. Sakarya University Journal of Science 22, no. 1 (February 2018): 16-23. https://doi.org/10.16984/saufenbilder.293282.
EndNote Maden D, Yazıcı İ (February 1, 2018) Designing of 2-DOF PID control algorithm for magnetic levitation systems. Sakarya University Journal of Science 22 1 16–23.
IEEE D. Maden and İ. Yazıcı, “Designing of 2-DOF PID control algorithm for magnetic levitation systems”, SAUJS, vol. 22, no. 1, pp. 16–23, 2018, doi: 10.16984/saufenbilder.293282.
ISNAD Maden, Dinçer - Yazıcı, İrfan. “Designing of 2-DOF PID Control Algorithm for Magnetic Levitation Systems”. Sakarya University Journal of Science 22/1 (February 2018), 16-23. https://doi.org/10.16984/saufenbilder.293282.
JAMA Maden D, Yazıcı İ. Designing of 2-DOF PID control algorithm for magnetic levitation systems. SAUJS. 2018;22:16–23.
MLA Maden, Dinçer and İrfan Yazıcı. “Designing of 2-DOF PID Control Algorithm for Magnetic Levitation Systems”. Sakarya University Journal of Science, vol. 22, no. 1, 2018, pp. 16-23, doi:10.16984/saufenbilder.293282.
Vancouver Maden D, Yazıcı İ. Designing of 2-DOF PID control algorithm for magnetic levitation systems. SAUJS. 2018;22(1):16-23.