Research Article
BibTex RIS Cite

Bir boyutlu (1D) 5-nitroisoftalat Cu(II) ve Cd(II)-koordinasyon polimerlerinin hidrotermal sentezi ve karakterizasyonu

Year 2018, Volume: 22 Issue: 3, 870 - 879, 01.06.2018
https://doi.org/10.16984/saufenbilder.325582

Abstract

 5-nitroisoftalik asit (5-nipH2) ve
1-metilimidazol (1-meim) ligantları ile iki yeni 1D Cu(II) ve Cd(II)
koordinasyon polimeri, {[Cu(µ-5-nip)(1-meim)
2(H2O)]∙2H2O}n
(
1) ve {[Cd(µ3-5-nip)(1-meim)(H2O)]∙H2O}n
(
2) hidrotermal yöntemle sentezlendi
ve yapıları elementel analiz, IR spektroskopisi ve tek kristal X-ışınları kırınım
yöntemiyle aydınlatıldı. X-ışınları analiz sonuçlarına göre 5-nitroisoftalat ligantı
her iki komplekste de köprü ligantı olarak hareket etmiş ve komplekslerin bir
boyutlu yapısı meydana gelmiştir. Her iki komplekste de 5-nip ligantının farklı
bağlanma biçimi sergilediği tespit edilmiştir. Komplekslerin 2D ve 3D
supramoleküler yapıları
O−H···O hidrojen
bağları ve π···π etkileşimleri ile oluşmuştur.
2 kompleksinde, D4 su kümesi bulunmaktadır. Ayrıca, komplekslerin
termal, fotolüminesans ve optik özellikleri de detaylı şekilde çalışılmıştır
.

References

  • [1] Q.-Y. Yang, K. Li, J. Luo, M. Pan, and C.-Y. Su, “A simple topological identification method for highly (3,12)-connected 3D MOFs showing anion exchange and luminescent properties,” Chemical Communications, vol. 47, no. 14, pp. 4234-4236, 2011.
  • [2] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, “Metal–organic framework materials as chemical sensors,” Chemical Reviews, vol. 112, no. 2, pp. 1105-1125, 2011.
  • [3] M. Yoon, R. Srirambalaji, and K. Kim, “Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis,” Chemical Reviews, vol. 112, no. 2, pp. 1196-1231, 2011.
  • [4] M. Du, C.-P. Li, M. Chen, Z.-W. Ge, X. Wang, L. Wang, and C.-S. Liu, “Divergent kinetic and thermodynamic hydration of a porous Cu (II) coordination polymer with exclusive CO2 sorption selectivity,” Journal of the American Chemical Society, vol. 136, no. 31, pp. 10906-10909, 2014.
  • [5] Z. Zhang, H. T. H. Nguyen, S. A. Miller, A. M. Ploskonka, J. B. DeCoste, and S. M. Cohen, “Polymer–Metal–Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations,” Journal of the American Chemical Society, vol. 138, no. 3, pp. 920-925, 2016.
  • [6] E. Haque, J. W. Jun, and S. H. Jhung, “Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235),” Journal of Hazardous materials, vol. 185, no. 1, pp. 507-511, 2011.
  • [7] S. Horike, K. Kishida, Y. Watanabe, Y. Inubushi, D. Umeyama, M. Sugimoto, T. Fukushima, M. Inukai, and S. Kitagawa, “Dense coordination network capable of selective CO2 capture from C1 and C2 hydrocarbons,” Journal of the American Chemical Society, vol. 134, no. 24, pp. 9852-9855, 2012.
  • [8] G.-L. Wen, Y.-Y. Wang, W.-H. Zhang, C. Ren, R.-T. Liu, and Q.-Z. Shi, “Self-assembled coordination polymers of V-shaped bis (pyridyl) thiadiazole dependent upon the spacer length and flexibility of aliphatic dicarboxylate ligands,” CrystEngComm, vol. 12, no. 4, pp. 1238-1251, 2010.
  • [9] D. Sun, G.-G. Luo, N. Zhang, J.-H. Chen, R.-B. Huang, L.-R. Lin, and L.-S. Zheng, “Influence of dicarboxylic acids on self-assembly process: Syntheses and structural characterization of new Ag (I) complexes derived from mixed ligands,” Polyhedron, vol. 28, no. 14, pp. 2983-2988, 2009.
  • [10] R. García-Zarracino, J. Ramos-Quiñones, and H. Höpfl, “Self-assembly of dialkyltin (IV) moieties and aromatic dicarboxylates to complexes with a polymeric or a discrete trinuclear macrocyclic structure in the solid state and a mixture of fast interchanging cyclooligomeric structures in solution,” Inorganic chemistry, vol. 42, no. 12, pp. 3835-3845, 2003.
  • [11] S. M. Lo, S. S. Chui, L.-Y. Shek, Z. Lin, X. X. Zhang, G.-h. Wen, and I. D. Williams, “Solvothermal Synthesis of a Stable Coordination Polymer with Copper-I− Copper-II Dimer Units:[Cu4{1,4-C6H4 (COO)2}3(4,4‘-bipy)2]n,” Journal of the American Chemical Society, vol. 122, no. 26, pp. 6293-6294, 2000.
  • [12] F. Luo, M.-S. Wang, M.-B. Luo, G.-M. Sun, Y.-M. Song, P.-X. Li, and G.-C. Guo, “Functionalizing the pore wall of chiral porous metal–organic frameworks by distinct –H, –OH, –NH2, –NO2,–COOH shutters showing selective adsorption of CO2, tunable photoluminescence, and direct white-light emission,” Chemical Communications, vol. 48, no. 48, pp. 5989-5991, 2012.
  • [13] L. Qin, Y.-H. Li, P.-J. Ma, and G.-H. Cui, “Exploring the effect of chain length of bridging ligands in cobalt (II) coordination polymers based on flexible bis (5,6-dimethylbenzimidazole) ligands: synthesis, crystal structures, fluorescence and catalytic properties,” Journal of Molecular Structure, vol. 1051, pp. 215-220, 2013.
  • [14] P. Sun, S. Zhao, Z. Yang, B. Li, and B. Wu, “Two Unusual Two‐dimensional (4,4) Network Cadmium Coordination Polymers Based on Flexible Bis (triazole) and Rigid Benzenedicarboxylate Co‐ligands,” Chinese Journal of Chemistry, vol. 30, no. 8, pp. 1813-1818, 2012.
  • [15] Q. Chen, X. Zhu, J.-G. Ding, B.-L. Li, and H.-Y. Li, “Syntheses, structures and properties of three cobalt coordination polymers based on flexible bis (triazole) and 5-nitroisophthalate coligands,” Journal of Molecular Structure, vol. 1038, pp. 194-199, 2013.
  • [16] D. K. Maity, B. Bhattacharya, A. Halder, A. Das, and D. Ghoshal, “Construction of diverse dimensionality in eight coordination polymers of bivalent metal ions using 5-nitroisophthalate and different linear N,N′-donor linkers,” Polyhedron, vol. 102, pp. 634-642, 2015.
  • [17] D.-S. Li, P. Zhang, J. Zhao, Z.-F. Fang, M. Du, K. Zou, and Y.-Q. Mu, “Two unique entangling Cd(II)-coordination frameworks constructed by square Cd4-building blocks and auxiliary N, N′-donor ligands,” Crystal Growth & Design, vol. 12, no. 4, pp. 1697-1702, 2012.
  • [18] G. M. Sheldrick, “SHELXT–Integrated space-group and crystal-structure determination,” Acta Crystallographica Section A: Foundations and Advances, vol. 71, no. 1, pp. 3-8, 2015.
  • [19] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, and H. Puschmann, “OLEX2: a complete structure solution, refinement and analysis program,” Journal of Applied Crystallography, vol. 42, no. 2, pp. 339-341, 2009.
  • [20] G. M. Sheldrick, “A short history of SHELX,” Acta Crystallographica Section A: Foundations of Crystallography, vol. 64, no. 1, pp. 112-122, 2008. [21] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, and J. v. d. Streek, “Mercury: visualization and analysis of crystal structures,” Journal of Applied Crystallography, vol. 39, no. 3, pp. 453-457, 2006.
  • [22] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor, “Synthesis, structure, and spectroscopic properties of copper (II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane] copper (II) perchlorate,” Journal of the Chemical Society, Dalton Transactions, no. 7, pp. 1349-1356, 1984.
  • [23] J. Li, R.-T. Wu, and H.-B. Li, “A raremesh of trees'(mot) net: poly [aquahemi [μ4-1, 6-bis (1,2,4-triazol-1-yl)hexane](μ2-5-nitroisophthalato)cadmium(II)],” Acta Crystallographica Section C: Crystal Structure Communications, vol. 67, no. 8, pp. m284-m286, 2011.
  • [24] J. W. Ye, D. Li, K. Q. Ye, Y. Liu, Y. F. Zhao, and P. Zhang, “Synthesis, Structures and Properties of Four Coordination Polymers Constructed from 5‐Nitroisophthalate and Benzimidazole Ligand,” Zeitschrift für anorganische und allgemeine Chemie, vol. 634, no. 2, pp. 345-351, 2008.
  • [25] F. Guo, B. Zhu, G. Xu, M. Zhang, X. Zhang, and J. Zhang, “Tuning structural topologies of five photoluminescent Cd (II) coordination polymers through modifying the substitute group of organic ligand,” Journal of Solid State Chemistry, vol. 199, pp. 42-48, 2013.
  • [26] M. Arıcı, O. Z. Yeşilel, E. Acar, and N. Dege, “Synthesis, characterization and properties of nicotinamide and isonicotinamide complexes with diverse dicarboxylic acids,” Polyhedron, vol. 127, pp. 293-301, 2017.
  • [27] M. Arıcı, O. Z. Yeşilel, and O. Büyükgüngör, “Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis (imidazol-1yl) benzene linkers: Synthesis, luminescence detection of acetone and optical properties,” Journal of Solid State Chemistry, vol. 249, pp. 141-148, 2017.

Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers

Year 2018, Volume: 22 Issue: 3, 870 - 879, 01.06.2018
https://doi.org/10.16984/saufenbilder.325582

Abstract

Two new one dimensional (1D) Cu(II) and Cd(II)-coordination
polymers, namely {[Cu(µ-5-nip)(1-meim)2(H2O)]∙2H2O}n
(1) and {[Cd(µ3-5-nip)(1-meim)(H2O)]∙H2O}n
(2), (5-nip= 5-nitroisophthalate,
1-meim= 1-methylimidazole) were synthesized by hydrothermal method with
5-nitroisophthalic acid and 1-methylimidazole. They were characterized by
elemental analysis, IR spectroscopy and single crystal X-ray diffraction. X-ray
analysis results showed that 5-nip acted as a bridging ligand in both complexes
and 1D chains of the complexes occurred. In the complexes, 5-nip ligand displayed
two different coordination modes. 2D and 3D supramolecular structures of the
complexes were generated through O−H···O hydrogen
bonding and π··· π interactions. Moreover, thermal, photoluminescence
and optic properties were studied in detail.

References

  • [1] Q.-Y. Yang, K. Li, J. Luo, M. Pan, and C.-Y. Su, “A simple topological identification method for highly (3,12)-connected 3D MOFs showing anion exchange and luminescent properties,” Chemical Communications, vol. 47, no. 14, pp. 4234-4236, 2011.
  • [2] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, “Metal–organic framework materials as chemical sensors,” Chemical Reviews, vol. 112, no. 2, pp. 1105-1125, 2011.
  • [3] M. Yoon, R. Srirambalaji, and K. Kim, “Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis,” Chemical Reviews, vol. 112, no. 2, pp. 1196-1231, 2011.
  • [4] M. Du, C.-P. Li, M. Chen, Z.-W. Ge, X. Wang, L. Wang, and C.-S. Liu, “Divergent kinetic and thermodynamic hydration of a porous Cu (II) coordination polymer with exclusive CO2 sorption selectivity,” Journal of the American Chemical Society, vol. 136, no. 31, pp. 10906-10909, 2014.
  • [5] Z. Zhang, H. T. H. Nguyen, S. A. Miller, A. M. Ploskonka, J. B. DeCoste, and S. M. Cohen, “Polymer–Metal–Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations,” Journal of the American Chemical Society, vol. 138, no. 3, pp. 920-925, 2016.
  • [6] E. Haque, J. W. Jun, and S. H. Jhung, “Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235),” Journal of Hazardous materials, vol. 185, no. 1, pp. 507-511, 2011.
  • [7] S. Horike, K. Kishida, Y. Watanabe, Y. Inubushi, D. Umeyama, M. Sugimoto, T. Fukushima, M. Inukai, and S. Kitagawa, “Dense coordination network capable of selective CO2 capture from C1 and C2 hydrocarbons,” Journal of the American Chemical Society, vol. 134, no. 24, pp. 9852-9855, 2012.
  • [8] G.-L. Wen, Y.-Y. Wang, W.-H. Zhang, C. Ren, R.-T. Liu, and Q.-Z. Shi, “Self-assembled coordination polymers of V-shaped bis (pyridyl) thiadiazole dependent upon the spacer length and flexibility of aliphatic dicarboxylate ligands,” CrystEngComm, vol. 12, no. 4, pp. 1238-1251, 2010.
  • [9] D. Sun, G.-G. Luo, N. Zhang, J.-H. Chen, R.-B. Huang, L.-R. Lin, and L.-S. Zheng, “Influence of dicarboxylic acids on self-assembly process: Syntheses and structural characterization of new Ag (I) complexes derived from mixed ligands,” Polyhedron, vol. 28, no. 14, pp. 2983-2988, 2009.
  • [10] R. García-Zarracino, J. Ramos-Quiñones, and H. Höpfl, “Self-assembly of dialkyltin (IV) moieties and aromatic dicarboxylates to complexes with a polymeric or a discrete trinuclear macrocyclic structure in the solid state and a mixture of fast interchanging cyclooligomeric structures in solution,” Inorganic chemistry, vol. 42, no. 12, pp. 3835-3845, 2003.
  • [11] S. M. Lo, S. S. Chui, L.-Y. Shek, Z. Lin, X. X. Zhang, G.-h. Wen, and I. D. Williams, “Solvothermal Synthesis of a Stable Coordination Polymer with Copper-I− Copper-II Dimer Units:[Cu4{1,4-C6H4 (COO)2}3(4,4‘-bipy)2]n,” Journal of the American Chemical Society, vol. 122, no. 26, pp. 6293-6294, 2000.
  • [12] F. Luo, M.-S. Wang, M.-B. Luo, G.-M. Sun, Y.-M. Song, P.-X. Li, and G.-C. Guo, “Functionalizing the pore wall of chiral porous metal–organic frameworks by distinct –H, –OH, –NH2, –NO2,–COOH shutters showing selective adsorption of CO2, tunable photoluminescence, and direct white-light emission,” Chemical Communications, vol. 48, no. 48, pp. 5989-5991, 2012.
  • [13] L. Qin, Y.-H. Li, P.-J. Ma, and G.-H. Cui, “Exploring the effect of chain length of bridging ligands in cobalt (II) coordination polymers based on flexible bis (5,6-dimethylbenzimidazole) ligands: synthesis, crystal structures, fluorescence and catalytic properties,” Journal of Molecular Structure, vol. 1051, pp. 215-220, 2013.
  • [14] P. Sun, S. Zhao, Z. Yang, B. Li, and B. Wu, “Two Unusual Two‐dimensional (4,4) Network Cadmium Coordination Polymers Based on Flexible Bis (triazole) and Rigid Benzenedicarboxylate Co‐ligands,” Chinese Journal of Chemistry, vol. 30, no. 8, pp. 1813-1818, 2012.
  • [15] Q. Chen, X. Zhu, J.-G. Ding, B.-L. Li, and H.-Y. Li, “Syntheses, structures and properties of three cobalt coordination polymers based on flexible bis (triazole) and 5-nitroisophthalate coligands,” Journal of Molecular Structure, vol. 1038, pp. 194-199, 2013.
  • [16] D. K. Maity, B. Bhattacharya, A. Halder, A. Das, and D. Ghoshal, “Construction of diverse dimensionality in eight coordination polymers of bivalent metal ions using 5-nitroisophthalate and different linear N,N′-donor linkers,” Polyhedron, vol. 102, pp. 634-642, 2015.
  • [17] D.-S. Li, P. Zhang, J. Zhao, Z.-F. Fang, M. Du, K. Zou, and Y.-Q. Mu, “Two unique entangling Cd(II)-coordination frameworks constructed by square Cd4-building blocks and auxiliary N, N′-donor ligands,” Crystal Growth & Design, vol. 12, no. 4, pp. 1697-1702, 2012.
  • [18] G. M. Sheldrick, “SHELXT–Integrated space-group and crystal-structure determination,” Acta Crystallographica Section A: Foundations and Advances, vol. 71, no. 1, pp. 3-8, 2015.
  • [19] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, and H. Puschmann, “OLEX2: a complete structure solution, refinement and analysis program,” Journal of Applied Crystallography, vol. 42, no. 2, pp. 339-341, 2009.
  • [20] G. M. Sheldrick, “A short history of SHELX,” Acta Crystallographica Section A: Foundations of Crystallography, vol. 64, no. 1, pp. 112-122, 2008. [21] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, and J. v. d. Streek, “Mercury: visualization and analysis of crystal structures,” Journal of Applied Crystallography, vol. 39, no. 3, pp. 453-457, 2006.
  • [22] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor, “Synthesis, structure, and spectroscopic properties of copper (II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane] copper (II) perchlorate,” Journal of the Chemical Society, Dalton Transactions, no. 7, pp. 1349-1356, 1984.
  • [23] J. Li, R.-T. Wu, and H.-B. Li, “A raremesh of trees'(mot) net: poly [aquahemi [μ4-1, 6-bis (1,2,4-triazol-1-yl)hexane](μ2-5-nitroisophthalato)cadmium(II)],” Acta Crystallographica Section C: Crystal Structure Communications, vol. 67, no. 8, pp. m284-m286, 2011.
  • [24] J. W. Ye, D. Li, K. Q. Ye, Y. Liu, Y. F. Zhao, and P. Zhang, “Synthesis, Structures and Properties of Four Coordination Polymers Constructed from 5‐Nitroisophthalate and Benzimidazole Ligand,” Zeitschrift für anorganische und allgemeine Chemie, vol. 634, no. 2, pp. 345-351, 2008.
  • [25] F. Guo, B. Zhu, G. Xu, M. Zhang, X. Zhang, and J. Zhang, “Tuning structural topologies of five photoluminescent Cd (II) coordination polymers through modifying the substitute group of organic ligand,” Journal of Solid State Chemistry, vol. 199, pp. 42-48, 2013.
  • [26] M. Arıcı, O. Z. Yeşilel, E. Acar, and N. Dege, “Synthesis, characterization and properties of nicotinamide and isonicotinamide complexes with diverse dicarboxylic acids,” Polyhedron, vol. 127, pp. 293-301, 2017.
  • [27] M. Arıcı, O. Z. Yeşilel, and O. Büyükgüngör, “Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis (imidazol-1yl) benzene linkers: Synthesis, luminescence detection of acetone and optical properties,” Journal of Solid State Chemistry, vol. 249, pp. 141-148, 2017.
There are 26 citations in total.

Details

Subjects Chemical Engineering
Journal Section Research Articles
Authors

Mürsel Arıcı

Publication Date June 1, 2018
Submission Date July 3, 2017
Acceptance Date November 13, 2017
Published in Issue Year 2018 Volume: 22 Issue: 3

Cite

APA Arıcı, M. (2018). Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers. Sakarya University Journal of Science, 22(3), 870-879. https://doi.org/10.16984/saufenbilder.325582
AMA Arıcı M. Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers. SAUJS. June 2018;22(3):870-879. doi:10.16984/saufenbilder.325582
Chicago Arıcı, Mürsel. “Hydrothermal Synthesis and Characterization of One Dimensional (1D) 5-Nitroisophthalate Cu(II) and Cd(II)-Coordination Polymers”. Sakarya University Journal of Science 22, no. 3 (June 2018): 870-79. https://doi.org/10.16984/saufenbilder.325582.
EndNote Arıcı M (June 1, 2018) Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers. Sakarya University Journal of Science 22 3 870–879.
IEEE M. Arıcı, “Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers”, SAUJS, vol. 22, no. 3, pp. 870–879, 2018, doi: 10.16984/saufenbilder.325582.
ISNAD Arıcı, Mürsel. “Hydrothermal Synthesis and Characterization of One Dimensional (1D) 5-Nitroisophthalate Cu(II) and Cd(II)-Coordination Polymers”. Sakarya University Journal of Science 22/3 (June 2018), 870-879. https://doi.org/10.16984/saufenbilder.325582.
JAMA Arıcı M. Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers. SAUJS. 2018;22:870–879.
MLA Arıcı, Mürsel. “Hydrothermal Synthesis and Characterization of One Dimensional (1D) 5-Nitroisophthalate Cu(II) and Cd(II)-Coordination Polymers”. Sakarya University Journal of Science, vol. 22, no. 3, 2018, pp. 870-9, doi:10.16984/saufenbilder.325582.
Vancouver Arıcı M. Hydrothermal synthesis and characterization of one dimensional (1D) 5-nitroisophthalate Cu(II) and Cd(II)-coordination polymers. SAUJS. 2018;22(3):870-9.