Research Article
BibTex RIS Cite

Nano iletişim teknolojilerinin biyomedikale katkısı

Year 2018, Volume: 22 Issue: 2, 516 - 528, 01.04.2018
https://doi.org/10.16984/saufenbilder.290340

Abstract

 Nano teknoloji biyomedikal
alanında birçok yeni çözümler vaat etmektedir. Nano ölçekte, bir nano makinede
en temel fonksiyonları yerine getirebilen bir birimdir. Nano makinalar arası
iletişim, dağıtılmış şekilde nano makinelerin daha karmaşık fonksiyonlarını
yerine getirmesine izin verir. Bio-Nano Nesnelerin İnterneti ise geliştirmek
için yeni zorlukların beklediği, verilerin güvenli bir şekilde değiştirilip,
işlenip ve biyokimyasal alan içerisinde iletişim kurabileceği aynı zamanda
internet ara yüzüne verilerin ulaştırılabileceği bir paradigma-kayması
konseptidir. Bu makalede ileri teknoloji ürünleri olan Moleküler Haberleşme ve
Bio-Nano Nesnelerin İnterneti, nano makineler arasındaki nano haberleşme temel
alınarak anlatılacaktır.

References

  • [1] Feynman, R. P. . There's plenty of room at the bottom. Engineering and science, 23(5), 22-36, 1960.
  • [2] Memsic Telos B node, http://www.memsic.com
  • [3] Tmote Sky node, http://www.eecs.harvard.edu
  • [4] MICA2, http://www.eol.ucar.edu
  • [5] Crossbow Imote2 node, http://www.xbow.com.
  • [6] SHIMMER, http://www.shimmersensing.com
  • [7] Sun Microsystems Sun SPOT, http://www.oracle.com/technetwork/
  • [8] Monnit Wireless Sensors, http://www.monnit.com
  • [9] LORD MicroStrain's Wireless Sensor Networks, http://www.microstrain.com
  • [10] Ecomote, http://www.ecomote.net
  • [11] Park, C., Liu, J. ve Chou, P. H. . Eco: an ultra-compact low-power wireless sensor node for real-time motion monitoring. In Proceedings of the 4th international symposium on Information processing in sensor networks (p. 54), 2005, April.
  • [12] Akyildiz, I. F. ve Jornet, J. M. Electromagnetic wireless nanosensor networks. Nano Communication Networks, 1(1), 3-19, 2010.
  • [13] Ceylan, H., külah, H., alp D, A., hasçelik, G. ve Özgen, C. MEMS Tabanlı Elektrokimyasal Biyosensör Tasarımı ve Üretimi.
  • [14] Jornet, J. M. ve Akyildiz, I. F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211-3221, 2011.
  • [15] Erkoç, Ş. Nanobilim ve nanoteknoloji, 2007.
  • [16] Dragoman, M., Muller, A. A., Dragoman, D., Coccetti, F. ve Plana, R. Terahertz antenna based on graphene. Journal of Applied Physics, 107(10), 104313, 2010.
  • [17] Onur, A. R. I., GÖRGÜN, A. R., Adnan, K. A. Y. A., ÇOŞKUN, Ö. ve İrfan, K. A. Y. A. . Karbon Nanotüp Malzeme İle Tasarlanan Heliks Antenlerin Performans Parametrelerinin İncelenmesi. SDU Teknik Bilimler Dergisi, 2(2), 2012.
  • [18] Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J. ve Meyyappan, M. . Carbon nanotube sensors for gas and organic vapor detection. Nano letters, 3(7), 929-933, 2003.
  • [19] Meyyappan, M. (Ed.). Carbon nanotubes: science and applications. CRC press, 2004.
  • [20] Kocaefe, Ç. . Nanotıp: Yaşam Bilimlerinde Nanoteknoloji Uygulamaları. Hacettepe Dergisi, 38, 33-38., 2007.
  • [21] Poizot, P. L. S. G., Laruelle, S., Grugeon, S., Dupont, L. ve Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407(6803), 496-499, 2000.
  • [22] Li, H., Huang, X., Chen, L., Wu, Z. ve Liang, Y. A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochemical and Solid-State Letters, 2(11), 547-549, 1999.
  • [23] Kayır, Y. Z. ve Baççıl, E. G. Nanoteknoloji Nedir. KOSGEB Sincan İşletme Geliştirme Merkezi, 1-6, 2010.
  • [24] Wirthlin, M. J., Hutchings, B. L. ve Gilson, K. L. The nano processor: a low resource reconfigurable processor. In FPGAs for Custom Computing Machines, 1994. Proceedings. IEEE Workshop on (pp. 23-30). IEEE, 1994, April.
  • [25] Coskun, A. ve Akkaya, E. U. Signal ratio amplification via modulation of resonance energy transfer: proof of principle in an emission ratiometric Hg (II) sensor. Journal of the American Chemical Society, 128(45), 14474-14475, 2006.
  • [26] Bennewitz, R., Crain, J. N., Kirakosian, A., Lin, J. L., McChesney, J. L., Petrovykh, D. Y. ve Himpsel, F. J. Atomic scale memory at a silicon surface. Nanotechnology, 13(4), 499, 2002.
  • [27] Avouris, P. Carbon nanotube electronics and photonics. Physics Today, 62(1), 34-40, 2009.
  • [28] Akyildiz, I. F., Brunetti, F. ve Blázquez, C. Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260-2279, 2008.
  • [29] Akyildiz, I. F. ve Jornet, J. M. . The internet of nano-things. IEEE Wireless Communications, 17(6), 2010.
  • [30] Akyildiz, I. F., Jornet, J. M. ve Pierobon, M. Nanonetworks: A new frontier in communications. Communications of the ACM, 54(11), 84-89, 2011.
  • [31] Gregori, M. ve Akyildiz, I. F. A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors. IEEE Journal on Selected Areas in Communications, 28(4), 2010.
  • [32] Ezziane, Z. DNA computing: applications and challenges. Nanotechnology, 17(2), R27, 2005.
  • [33] Gai, P. L., Stephan, O., McGuire, K., Rao, A. M., Dresselhaus, M. S., Dresselhaus, G. ve Colliex, C. Structural systematics in boron-doped single wall carbon nanotubes. Journal of Materials Chemistry, 14(4), 669-675, 2004.
  • [34] Cheng, H. M., Li, F., Su, G., Pan, H. Y., He, L. L., Sun, X. ve Dresselhaus, M. S. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Applied Physics Letters, 72(25), 3282-3284, 1998.
  • [35] Dixon, R. A. ve Lamb, C. J. Molecular communication in interactions between plants and microbial pathogens. Annual review of plant biology, 41(1), 339-367, 1990.
  • [36] Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enomoto, A., Moore, M. ve Nakano, T. Molecular communication. Journal-Institute of Electronics Information and Communication Engineers, 89(2), 162, 2006.
  • [37] Atakan, B. MOLEKÜLER HABERLEŞME VE NANOAĞLAR.
  • [38] Sesia, S., Baker, M. ve Toufik, I. LTE-the UMTS long term evolution: from theory to practice. John Wiley & Sons, 2011.
  • [39] Gubbi, J., Buyya, R., Marusic, S. ve Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660, 2013.
  • [40] Atzori, L., Iera, A. ve Morabito, G. The internet of things: A survey. Computer networks, 54(15), 2787-2805, 2010.
  • [41] Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S. ve Borriello, G. Building the internet of things using RFID: the RFID ecosystem experience. IEEE Internet Computing, 13(3), 2009.
  • [42] AKTAŞ, F., ÇEKEN, C. ve ERDEMLİ, Y. E. Nesnelerin İnterneti Teknolojisinin Biyomedikal Alanındaki Uygulamaları. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4(1), 2016.
  • [43] Aktaş, F., Çeken, C. ve Erdemli̇, Y. E. Transmission of physiological signals with quality of service support by using Wireless Body Area Networks. In Medical Technologies National Conference (TIPTEKNO), 2015 (pp. 1-4). IEEE, 2015.
  • [44] Luo, J., Chen, Y., Tang, K. ve Luo, J. Remote monitoring information system and its applications based on the Internet of Things. In BioMedical Information Engineering, 2009. FBIE 2009. International Conference on Future (pp. 482-485). IEEE, 2009.
  • [45] Sokullu, R., Akkas, M. A. ve Çetin, H. E. Wireless patient monitoring system. In Sensor Technologies and Applications (SENSORCOMM), 2010 Fourth International Conference on (pp. 179-184). IEEE, 2010.
  • [46] Akyildiz, I. F., Pierobon, M., Balasubramaniam, S. ve Koucheryavy, Y. The internet of bio-nano things. IEEE Communications Magazine, 53(3), 32-40, 2015.
  • [47] Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A. ve Arima, K. Molecular communication for nanomachines using intercellular calcium signaling. In Nanotechnology, 2005. 5th IEEE Conference on (pp. 478-481). IEEE, 2005.
  • [48] Giné, L. P. ve Akyildiz, I. F. Molecular communication options for long range nanonetworks. Computer Networks, 53(16), 2753-2766, 2009.
  • [49] Atakan, B. ve Akan, O. B. An information theoretical approach for molecular communication. In Bio-Inspired Models of Network, Information and Computing Systems, 2007. Bionetics 2007. 2nd (pp. 33-40). IEEE, 2007.
  • [50] Nakano, T., Moore, M. J., Wei, F., Vasilakos, A. V. ve Shuai, J. Molecular communication and networking: Opportunities and challenges. IEEE transactions on nanobioscience, 11(2), 135-148, 2012.
  • [51] Çoşkun, A. Hücrelerarası İletişim ve Haberleşme, Bilim ve Teknik, Eylül 2011

Contribution of communication technology to the biomedical field

Year 2018, Volume: 22 Issue: 2, 516 - 528, 01.04.2018
https://doi.org/10.16984/saufenbilder.290340

Abstract

Nanotechnology promise new solutions for several applications
in the biomedical field. At the nanoscale, a nanomachine is considered as the
most basic functional unit. Communication among nanomachines will allow them to
accomplish more complex functions in a distributed manner. The Internet of
Bio-Nano Things, stands as a paradigm-shifting concept, where novel challenges
are faced to develop efficient and safe techniques for the exchange of
information, interaction, and networking within the biochemical domain, while
enabling an interface of the Internet. In this paper, the state of the art in
molecular communication and Internet of Bio-Nano Things are reviewed to
motivate the study of nano communication among nanodevices.

References

  • [1] Feynman, R. P. . There's plenty of room at the bottom. Engineering and science, 23(5), 22-36, 1960.
  • [2] Memsic Telos B node, http://www.memsic.com
  • [3] Tmote Sky node, http://www.eecs.harvard.edu
  • [4] MICA2, http://www.eol.ucar.edu
  • [5] Crossbow Imote2 node, http://www.xbow.com.
  • [6] SHIMMER, http://www.shimmersensing.com
  • [7] Sun Microsystems Sun SPOT, http://www.oracle.com/technetwork/
  • [8] Monnit Wireless Sensors, http://www.monnit.com
  • [9] LORD MicroStrain's Wireless Sensor Networks, http://www.microstrain.com
  • [10] Ecomote, http://www.ecomote.net
  • [11] Park, C., Liu, J. ve Chou, P. H. . Eco: an ultra-compact low-power wireless sensor node for real-time motion monitoring. In Proceedings of the 4th international symposium on Information processing in sensor networks (p. 54), 2005, April.
  • [12] Akyildiz, I. F. ve Jornet, J. M. Electromagnetic wireless nanosensor networks. Nano Communication Networks, 1(1), 3-19, 2010.
  • [13] Ceylan, H., külah, H., alp D, A., hasçelik, G. ve Özgen, C. MEMS Tabanlı Elektrokimyasal Biyosensör Tasarımı ve Üretimi.
  • [14] Jornet, J. M. ve Akyildiz, I. F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211-3221, 2011.
  • [15] Erkoç, Ş. Nanobilim ve nanoteknoloji, 2007.
  • [16] Dragoman, M., Muller, A. A., Dragoman, D., Coccetti, F. ve Plana, R. Terahertz antenna based on graphene. Journal of Applied Physics, 107(10), 104313, 2010.
  • [17] Onur, A. R. I., GÖRGÜN, A. R., Adnan, K. A. Y. A., ÇOŞKUN, Ö. ve İrfan, K. A. Y. A. . Karbon Nanotüp Malzeme İle Tasarlanan Heliks Antenlerin Performans Parametrelerinin İncelenmesi. SDU Teknik Bilimler Dergisi, 2(2), 2012.
  • [18] Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J. ve Meyyappan, M. . Carbon nanotube sensors for gas and organic vapor detection. Nano letters, 3(7), 929-933, 2003.
  • [19] Meyyappan, M. (Ed.). Carbon nanotubes: science and applications. CRC press, 2004.
  • [20] Kocaefe, Ç. . Nanotıp: Yaşam Bilimlerinde Nanoteknoloji Uygulamaları. Hacettepe Dergisi, 38, 33-38., 2007.
  • [21] Poizot, P. L. S. G., Laruelle, S., Grugeon, S., Dupont, L. ve Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407(6803), 496-499, 2000.
  • [22] Li, H., Huang, X., Chen, L., Wu, Z. ve Liang, Y. A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochemical and Solid-State Letters, 2(11), 547-549, 1999.
  • [23] Kayır, Y. Z. ve Baççıl, E. G. Nanoteknoloji Nedir. KOSGEB Sincan İşletme Geliştirme Merkezi, 1-6, 2010.
  • [24] Wirthlin, M. J., Hutchings, B. L. ve Gilson, K. L. The nano processor: a low resource reconfigurable processor. In FPGAs for Custom Computing Machines, 1994. Proceedings. IEEE Workshop on (pp. 23-30). IEEE, 1994, April.
  • [25] Coskun, A. ve Akkaya, E. U. Signal ratio amplification via modulation of resonance energy transfer: proof of principle in an emission ratiometric Hg (II) sensor. Journal of the American Chemical Society, 128(45), 14474-14475, 2006.
  • [26] Bennewitz, R., Crain, J. N., Kirakosian, A., Lin, J. L., McChesney, J. L., Petrovykh, D. Y. ve Himpsel, F. J. Atomic scale memory at a silicon surface. Nanotechnology, 13(4), 499, 2002.
  • [27] Avouris, P. Carbon nanotube electronics and photonics. Physics Today, 62(1), 34-40, 2009.
  • [28] Akyildiz, I. F., Brunetti, F. ve Blázquez, C. Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260-2279, 2008.
  • [29] Akyildiz, I. F. ve Jornet, J. M. . The internet of nano-things. IEEE Wireless Communications, 17(6), 2010.
  • [30] Akyildiz, I. F., Jornet, J. M. ve Pierobon, M. Nanonetworks: A new frontier in communications. Communications of the ACM, 54(11), 84-89, 2011.
  • [31] Gregori, M. ve Akyildiz, I. F. A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors. IEEE Journal on Selected Areas in Communications, 28(4), 2010.
  • [32] Ezziane, Z. DNA computing: applications and challenges. Nanotechnology, 17(2), R27, 2005.
  • [33] Gai, P. L., Stephan, O., McGuire, K., Rao, A. M., Dresselhaus, M. S., Dresselhaus, G. ve Colliex, C. Structural systematics in boron-doped single wall carbon nanotubes. Journal of Materials Chemistry, 14(4), 669-675, 2004.
  • [34] Cheng, H. M., Li, F., Su, G., Pan, H. Y., He, L. L., Sun, X. ve Dresselhaus, M. S. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Applied Physics Letters, 72(25), 3282-3284, 1998.
  • [35] Dixon, R. A. ve Lamb, C. J. Molecular communication in interactions between plants and microbial pathogens. Annual review of plant biology, 41(1), 339-367, 1990.
  • [36] Hiyama, S., Moritani, Y., Suda, T., Egashira, R., Enomoto, A., Moore, M. ve Nakano, T. Molecular communication. Journal-Institute of Electronics Information and Communication Engineers, 89(2), 162, 2006.
  • [37] Atakan, B. MOLEKÜLER HABERLEŞME VE NANOAĞLAR.
  • [38] Sesia, S., Baker, M. ve Toufik, I. LTE-the UMTS long term evolution: from theory to practice. John Wiley & Sons, 2011.
  • [39] Gubbi, J., Buyya, R., Marusic, S. ve Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660, 2013.
  • [40] Atzori, L., Iera, A. ve Morabito, G. The internet of things: A survey. Computer networks, 54(15), 2787-2805, 2010.
  • [41] Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S. ve Borriello, G. Building the internet of things using RFID: the RFID ecosystem experience. IEEE Internet Computing, 13(3), 2009.
  • [42] AKTAŞ, F., ÇEKEN, C. ve ERDEMLİ, Y. E. Nesnelerin İnterneti Teknolojisinin Biyomedikal Alanındaki Uygulamaları. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4(1), 2016.
  • [43] Aktaş, F., Çeken, C. ve Erdemli̇, Y. E. Transmission of physiological signals with quality of service support by using Wireless Body Area Networks. In Medical Technologies National Conference (TIPTEKNO), 2015 (pp. 1-4). IEEE, 2015.
  • [44] Luo, J., Chen, Y., Tang, K. ve Luo, J. Remote monitoring information system and its applications based on the Internet of Things. In BioMedical Information Engineering, 2009. FBIE 2009. International Conference on Future (pp. 482-485). IEEE, 2009.
  • [45] Sokullu, R., Akkas, M. A. ve Çetin, H. E. Wireless patient monitoring system. In Sensor Technologies and Applications (SENSORCOMM), 2010 Fourth International Conference on (pp. 179-184). IEEE, 2010.
  • [46] Akyildiz, I. F., Pierobon, M., Balasubramaniam, S. ve Koucheryavy, Y. The internet of bio-nano things. IEEE Communications Magazine, 53(3), 32-40, 2015.
  • [47] Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A. ve Arima, K. Molecular communication for nanomachines using intercellular calcium signaling. In Nanotechnology, 2005. 5th IEEE Conference on (pp. 478-481). IEEE, 2005.
  • [48] Giné, L. P. ve Akyildiz, I. F. Molecular communication options for long range nanonetworks. Computer Networks, 53(16), 2753-2766, 2009.
  • [49] Atakan, B. ve Akan, O. B. An information theoretical approach for molecular communication. In Bio-Inspired Models of Network, Information and Computing Systems, 2007. Bionetics 2007. 2nd (pp. 33-40). IEEE, 2007.
  • [50] Nakano, T., Moore, M. J., Wei, F., Vasilakos, A. V. ve Shuai, J. Molecular communication and networking: Opportunities and challenges. IEEE transactions on nanobioscience, 11(2), 135-148, 2012.
  • [51] Çoşkun, A. Hücrelerarası İletişim ve Haberleşme, Bilim ve Teknik, Eylül 2011
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Mustafa Alper Akkaş

Publication Date April 1, 2018
Submission Date February 6, 2017
Acceptance Date March 5, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Akkaş, M. A. (2018). Nano iletişim teknolojilerinin biyomedikale katkısı. Sakarya University Journal of Science, 22(2), 516-528. https://doi.org/10.16984/saufenbilder.290340
AMA Akkaş MA. Nano iletişim teknolojilerinin biyomedikale katkısı. SAUJS. April 2018;22(2):516-528. doi:10.16984/saufenbilder.290340
Chicago Akkaş, Mustafa Alper. “Nano iletişim Teknolojilerinin Biyomedikale katkısı”. Sakarya University Journal of Science 22, no. 2 (April 2018): 516-28. https://doi.org/10.16984/saufenbilder.290340.
EndNote Akkaş MA (April 1, 2018) Nano iletişim teknolojilerinin biyomedikale katkısı. Sakarya University Journal of Science 22 2 516–528.
IEEE M. A. Akkaş, “Nano iletişim teknolojilerinin biyomedikale katkısı”, SAUJS, vol. 22, no. 2, pp. 516–528, 2018, doi: 10.16984/saufenbilder.290340.
ISNAD Akkaş, Mustafa Alper. “Nano iletişim Teknolojilerinin Biyomedikale katkısı”. Sakarya University Journal of Science 22/2 (April 2018), 516-528. https://doi.org/10.16984/saufenbilder.290340.
JAMA Akkaş MA. Nano iletişim teknolojilerinin biyomedikale katkısı. SAUJS. 2018;22:516–528.
MLA Akkaş, Mustafa Alper. “Nano iletişim Teknolojilerinin Biyomedikale katkısı”. Sakarya University Journal of Science, vol. 22, no. 2, 2018, pp. 516-28, doi:10.16984/saufenbilder.290340.
Vancouver Akkaş MA. Nano iletişim teknolojilerinin biyomedikale katkısı. SAUJS. 2018;22(2):516-28.