Optical properties of the electron and gamma-ray irradiated soda-lime glass samples
Year 2018,
Volume: 22 Issue: 6, 1518 - 1523, 01.12.2018
Gülten Onay
,
Ramazan Şahin
Abstract
Optical transmission and absorption spectra of Soda-lime glass samples were studied after irradiation by 8
MeV electron and γ-ray beams. We used modified clinical LINAC for production of electron beam whereas
60Co was used as a γ-ray source. Optical properties of glass samples were analyzed for different doses and
radiation types. Irradiation induced color centers in the glass samples were observed in both cases.
Moreover, time-dependent optical properties were also acquired after irradiation source was turned off and
we observed that these colour centers disappear slowly even at room temperature. Optical transmission
spectra of 8 MeV electron and γ-ray beam irradiated samples show spectacular absorption band in the
visible region. On the other hand, these absorption bands nearly recover themselves when the irradiated
samples are baked for a short time above 100 ◦C.
References
- [1] A. Bishay, “Radiation induced color centers
in multicomponent glasses,” Journal of NonCrystalline
Solids vol.3 no.1, pp. 54-114,
1970.
- [2] S. M. J. Akhtar, M. Ashraf, S. H. Khan, “A
study of neutron and gamma radiation
effects on transmission of various types of
glasses, optical coatings, cemented optics
and fiber,” Optical Materials, vol. 29, pp.
1595-1603, 2007.
- [3] F. H. ElBatal, M. A. Marzouk, A. M.
Abdelghany, “Uv-visible and infrared
absorption spectra of gamma irradiated
V2O5-doped in sodium phosphate, lead
phosphate, zinc phosphate glasses: A
comparative study,” Journal of NonCrystalline
Solids, vol. 357, no. 3, pp. 1027-
1036, 2011.
- [4] A. Morono, P. Martin, A. Gusarov, E. R.
Hodgson, “Radiation induced absorption
and luminescence of selected alternative
radiation resistant glasses,” Journal of
Nuclear Materials, vol. 386-388, pp. 1030-
1033, 2009.
- [5] J. Du, J. Wu, L. Song, L. Zhao, “Reflectivity
and absorption coefficient of a borosilicate
glass during Co-60-gamma irradiation
calculated from data measured by an
integrating sphere,” Radiation Effects and
Defects in Solids, vol. 167, no. 1, pp. 37-48,
2012.
- [6] J. Du, J. Wu, L. Zhao, L. Song, “Color
centers of a borosilicate glass induced by 10
MeV proton, 1.85 MeV electron and 60Co-ߛ
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. , no. : pp, year
6 ray,” Radiation Physics and Chemistry, vol.
86, pp. 59–63, 2013.
- [7] A. M. Abdelghany, H. A. ElBatal, F. M.
EzzElDin, “Influence of CuO content on the
structure of lithium fluoroborate glasses:
Spectral and gamma irradiation studies,”
Spectrochimica Acta Part A-Molecular and
Biomolecular Spectroscopy, vol. 149, pp.
788–792, 2015.
- [8] F. H. ElBatal, M. A. Ouis, A. M.
Abdelghany, N. A. Ghoneim, “Structural
and Optical Correlation of GammaIrradiated
3d Transition Metals-Doped
Lithium Disilicate Glasses,” Silicon, vol. 7,
no. 4, pp. 409– 417, 2015.
- [9] N. Baydogan, A. B. Tugrul, “Borosilicate
glass for gamma irradiation fields,” Solid
State Sciences, vol. 14, no. 11-12, pp.1692–
1697, 2012.
- [10] C. Bootjomchai, “Comparative studies
between theoretical and experimental of
elastic properties and irradiation effects of
soda lime glasses doped with neodymium
oxide,” Radiation Physics and Chemistry,
vol. 110, pp. 96–104, 2015.
- [11] S. Baccaro, A. Cemmi, I. Di Sarcina, F.
Menchini, “Gamma Rays Effects on the
Optical Properties of Cerium-Doped
Glasses,” International Journal of Applied
Glass Science, vol. 6, no. 3, pp. 295–301,
2015.
- [12] R. Kaur, S. Singh, O. P. Pandey, “Influence
of CdO and gamma irradiation on the
infrared absorption spectra of borosilicate
glass,” Journal of Molecular Structure, vol.
1049, pp. 409–413, 2013.
- [13] T. V. Bocharova, D. S. Sysoev, V. A. Aseev,
N. O. Tagil’tseva, “Radiation-induced color
centers in phosphogermanate glass-like
materials,” Glass Physics and Chemistry,
vol. 41, no. 4, pp. 378–384, 2015.
- [14] M. A. Marzouk, Y. M. Hamdy, H. A.
ElBatal, F. M. E. ElDin,
“Photoluminescence and spectroscopic
dependence of fluorophosphate glasses on
samarium ions concentration and the
induced defects by gamma irradiation”,
Journal of Luminescence, vol. 166, pp. 295–
303, 2015.
- [15] P. Yasaka, N. Pattanaboonmee, H. J. Kim, P.
Limkitjaroenporn, J. Kaewkhao, “Gamma
radiation shielding and optical properties
measurements of zinc bismuth borate
glasses,” Annals Of Nuclear Energy, vol. 68,
pp. 4-9, 2014.
- [16] C. Bootjomchai, J. Laopaiboon, C. Yenchai,
R. Laopaiboon, “Gamma-ray shielding and
structural properties of barium-bismuthborosilicate
glasses,” Radiation Physics and
Chemistry, vol. 81, no. 7, pp.785-790, 2012.
- [17] A. Saeed, R. M. El Shazly, Y. H. Elbashar,
A. M. Abou El-azm, M. M. El-Okr, M. N. H.
Comsan, A. M. Osman, A. M. Abdalmonem,
A. R. El-Sersy, “Gamma ray
attenuation in a developed borate glassy
system,” Radiation Physics and Chemistry,
vol. 102, pp. 167-170, 2014.
- [18] P. Dandamudi, M. N. Kozicki, H. J.
Barnaby, Y. Gonzalez-Velo, M. Mitkova, K.
E. Holbert, M. Ailavajhala, W. Yu, “Sensors
based on radiation-induced diffusion of
silver in germanium selenide glasses,” IEEE
Transactions on Nuclear Science, vol. 60,
no. 6, pp. 4257-4264, 2013.
- [19] I. Kabacelik, H. Kutaruk, S. Yaltkaya, R.
Sahin, “Gamma irradiation induced effects
on the TCO thin films,” Radiation Physics
and Chemistry, vol. 134, pp. 89-92, 2017.
- [20] I. Boztosun, H. Dapo, M. Karakoç, S.F.
Özmen, Y. Çeçen, A. Çoban, T. Caner, E.
Bayram, T.R. Saito, T. Akdoğan, V.
Bozkurt, Y. Küçük, D. Kaya, M. N.
Harakeh, “Photonuclear reactions with zinc:
A case for clinical linacs,” The European
Physical Journal Plus, vol. 130, no. 9, pp.
185, 2015.
- [21] F. M. Ezz-Eldin, I. Kashif, H. A. El-Batal,
“Some physical properties of gamma
irradiated alkali-silicate glasses,” Radiation
Physics and Chemistry, vol. 44, no. (1-2),
pp. 39-43, 1994.
- [22] A. Gusarov, D. Doyle, A. Hermanne, F.
Berghmans, M. Fruit, G. Ulbrich, M.
Blondel, “Refractive-index changes caused
by proton radiation in silicate optical
glasses,” Applied Optics, vol. 41, no. 4, pp.
678–684, 2002.
Elektron ve gama demetleri ile ışınlanmış soda-lime cam örneklerin optik özellikleri
Year 2018,
Volume: 22 Issue: 6, 1518 - 1523, 01.12.2018
Gülten Onay
,
Ramazan Şahin
Abstract
Soda-lime
cam örneklerin optik geçirgenlik ve soğurma spektrumları 8 MeV elektron ve
γ-ışını demetlerine maruz bırakılması sonrasında çalışıldı. Elektron
demeti üretimi için modifiye klinik LINAC kullanılırken buna karşılık γ-ışını
kaynağı olarak Co-60 kullanıldı. Cam numunelerin optik özellikleri, farklı
dozlar ve radyasyon türleri için analiz edildi. Her iki durumda da cam
örneklerinde radyasyonun sebep olduğu renk merkezleri gözlendi. Dahası da,
ışınlama kaynağı kapatıldıktan sonra zamana bağlı optik özellikler de elde edilerek
bu renk merkezlerinin oda sıcaklığında bile yavaşça kaybolduğu gözlendi. 8
MeV elektron ve γ- ışını demetlerine maruz bırakılan örneklerin optik
geçirgenlik spektrumu, görünür bölgede sıradışı sopurma bandı göstermektedir. Öte
yandan, ışınlanmış numuneler 100 °C' nin üzerinde kısa bir süre fırınlanınca bu
soğurma bantları neredeyse kaybolmaktadır.
References
- [1] A. Bishay, “Radiation induced color centers
in multicomponent glasses,” Journal of NonCrystalline
Solids vol.3 no.1, pp. 54-114,
1970.
- [2] S. M. J. Akhtar, M. Ashraf, S. H. Khan, “A
study of neutron and gamma radiation
effects on transmission of various types of
glasses, optical coatings, cemented optics
and fiber,” Optical Materials, vol. 29, pp.
1595-1603, 2007.
- [3] F. H. ElBatal, M. A. Marzouk, A. M.
Abdelghany, “Uv-visible and infrared
absorption spectra of gamma irradiated
V2O5-doped in sodium phosphate, lead
phosphate, zinc phosphate glasses: A
comparative study,” Journal of NonCrystalline
Solids, vol. 357, no. 3, pp. 1027-
1036, 2011.
- [4] A. Morono, P. Martin, A. Gusarov, E. R.
Hodgson, “Radiation induced absorption
and luminescence of selected alternative
radiation resistant glasses,” Journal of
Nuclear Materials, vol. 386-388, pp. 1030-
1033, 2009.
- [5] J. Du, J. Wu, L. Song, L. Zhao, “Reflectivity
and absorption coefficient of a borosilicate
glass during Co-60-gamma irradiation
calculated from data measured by an
integrating sphere,” Radiation Effects and
Defects in Solids, vol. 167, no. 1, pp. 37-48,
2012.
- [6] J. Du, J. Wu, L. Zhao, L. Song, “Color
centers of a borosilicate glass induced by 10
MeV proton, 1.85 MeV electron and 60Co-ߛ
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. , no. : pp, year
6 ray,” Radiation Physics and Chemistry, vol.
86, pp. 59–63, 2013.
- [7] A. M. Abdelghany, H. A. ElBatal, F. M.
EzzElDin, “Influence of CuO content on the
structure of lithium fluoroborate glasses:
Spectral and gamma irradiation studies,”
Spectrochimica Acta Part A-Molecular and
Biomolecular Spectroscopy, vol. 149, pp.
788–792, 2015.
- [8] F. H. ElBatal, M. A. Ouis, A. M.
Abdelghany, N. A. Ghoneim, “Structural
and Optical Correlation of GammaIrradiated
3d Transition Metals-Doped
Lithium Disilicate Glasses,” Silicon, vol. 7,
no. 4, pp. 409– 417, 2015.
- [9] N. Baydogan, A. B. Tugrul, “Borosilicate
glass for gamma irradiation fields,” Solid
State Sciences, vol. 14, no. 11-12, pp.1692–
1697, 2012.
- [10] C. Bootjomchai, “Comparative studies
between theoretical and experimental of
elastic properties and irradiation effects of
soda lime glasses doped with neodymium
oxide,” Radiation Physics and Chemistry,
vol. 110, pp. 96–104, 2015.
- [11] S. Baccaro, A. Cemmi, I. Di Sarcina, F.
Menchini, “Gamma Rays Effects on the
Optical Properties of Cerium-Doped
Glasses,” International Journal of Applied
Glass Science, vol. 6, no. 3, pp. 295–301,
2015.
- [12] R. Kaur, S. Singh, O. P. Pandey, “Influence
of CdO and gamma irradiation on the
infrared absorption spectra of borosilicate
glass,” Journal of Molecular Structure, vol.
1049, pp. 409–413, 2013.
- [13] T. V. Bocharova, D. S. Sysoev, V. A. Aseev,
N. O. Tagil’tseva, “Radiation-induced color
centers in phosphogermanate glass-like
materials,” Glass Physics and Chemistry,
vol. 41, no. 4, pp. 378–384, 2015.
- [14] M. A. Marzouk, Y. M. Hamdy, H. A.
ElBatal, F. M. E. ElDin,
“Photoluminescence and spectroscopic
dependence of fluorophosphate glasses on
samarium ions concentration and the
induced defects by gamma irradiation”,
Journal of Luminescence, vol. 166, pp. 295–
303, 2015.
- [15] P. Yasaka, N. Pattanaboonmee, H. J. Kim, P.
Limkitjaroenporn, J. Kaewkhao, “Gamma
radiation shielding and optical properties
measurements of zinc bismuth borate
glasses,” Annals Of Nuclear Energy, vol. 68,
pp. 4-9, 2014.
- [16] C. Bootjomchai, J. Laopaiboon, C. Yenchai,
R. Laopaiboon, “Gamma-ray shielding and
structural properties of barium-bismuthborosilicate
glasses,” Radiation Physics and
Chemistry, vol. 81, no. 7, pp.785-790, 2012.
- [17] A. Saeed, R. M. El Shazly, Y. H. Elbashar,
A. M. Abou El-azm, M. M. El-Okr, M. N. H.
Comsan, A. M. Osman, A. M. Abdalmonem,
A. R. El-Sersy, “Gamma ray
attenuation in a developed borate glassy
system,” Radiation Physics and Chemistry,
vol. 102, pp. 167-170, 2014.
- [18] P. Dandamudi, M. N. Kozicki, H. J.
Barnaby, Y. Gonzalez-Velo, M. Mitkova, K.
E. Holbert, M. Ailavajhala, W. Yu, “Sensors
based on radiation-induced diffusion of
silver in germanium selenide glasses,” IEEE
Transactions on Nuclear Science, vol. 60,
no. 6, pp. 4257-4264, 2013.
- [19] I. Kabacelik, H. Kutaruk, S. Yaltkaya, R.
Sahin, “Gamma irradiation induced effects
on the TCO thin films,” Radiation Physics
and Chemistry, vol. 134, pp. 89-92, 2017.
- [20] I. Boztosun, H. Dapo, M. Karakoç, S.F.
Özmen, Y. Çeçen, A. Çoban, T. Caner, E.
Bayram, T.R. Saito, T. Akdoğan, V.
Bozkurt, Y. Küçük, D. Kaya, M. N.
Harakeh, “Photonuclear reactions with zinc:
A case for clinical linacs,” The European
Physical Journal Plus, vol. 130, no. 9, pp.
185, 2015.
- [21] F. M. Ezz-Eldin, I. Kashif, H. A. El-Batal,
“Some physical properties of gamma
irradiated alkali-silicate glasses,” Radiation
Physics and Chemistry, vol. 44, no. (1-2),
pp. 39-43, 1994.
- [22] A. Gusarov, D. Doyle, A. Hermanne, F.
Berghmans, M. Fruit, G. Ulbrich, M.
Blondel, “Refractive-index changes caused
by proton radiation in silicate optical
glasses,” Applied Optics, vol. 41, no. 4, pp.
678–684, 2002.