Research Article
BibTex RIS Cite

Preparation and antibacterial activity of solvothermal synthesized ZnFe2O4/Ag-TiO2 nanocomposite

Year 2018, Volume: 22 Issue: 6, 1720 - 1726, 01.12.2018
https://doi.org/10.16984/saufenbilder.373607

Abstract

In this study, ZnFe2O4
magnetic nanoparticlesandZnFe2O4/Ag-TiO2
nanocomposite
were synthesized solvothermally. The prepared
materials were characterized using X-ray diffraction, Scanning electron
microscopy, Fourier transform infrared spectroscopy and Vibrating sample
magnetometer. In addition, the antibacterial performance of materials was
evaluated against Gram-positive
bacteria (Staphyloccocus aureus) and Gram-negative
bacteria (Escherichia coli).
ZnFe2O4/Ag-TiO2 nanocomposite was shown stronger
antibacterial efficiency against Gram-positive bacteria Staphyloccocus aureus than Escherichia
coli
. Also, the inhibition diameter of
15±0.2 mm for ZnFe2O4/Ag-TiO2 nanocomposite was
measured since the antibacterial activity increased by nanocomposite formation.

References

  • [1] P. Guo, G. Zhang, J. Yu, H. Li, X.S. Zhao, “Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 395, pp. 168–174, 2012.
  • [2] G. Tong, F. Du, W. Wu, R. Wu, F. Liu, Y. Liang, “Enhanced reactive oxygen species (ROS) yields and antibacterial activity of spongy ZnO/ZnFe2O4 hybrid micro-hexahedra selectively synthesized through a versatile glucose-engineered co-precipitation/annealing process,” Journal of Materials Chemistry B, vol. 1, pp. 2647–2657, 2013.
  • [3] R. Liu, M. Lv, Q. Wang, H. Li, P. Guo, X.S. Zhao, “Solvothermal synthesis of size-tunable ZnFe2O4 colloidal nanocrystal assemblies and their electrocatalytic activity towards hydrogen peroxide,” Journal of Magnetism and Magnetic Materials, vol. 424, pp. 155–160, 2017.
  • [4] P. Guo, M. Lv, G. Han, C. Wen, Q. Wang, H. Li, X.S. Zhao, “Solvothermal synthesis of hierarchical colloidal nanocrystal assemblies of ZnFe2O4 and their application in water treatment,” Materials, vol. 9, no. 806, pp. 1-10, 2016.
  • [5] R. Ji, C. Cao, Z. Chen, H. Zhai, J. Bai, “Solvothermal synthesis of CoxFe3−xO4 spheres and their microwave absorption properties, Journal of Materials Chemistry C, vol. 2, pp. 5944–5954, 2014.
  • [6] N. Sanpo, C.C. Berndt, J. Wang, “Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods,” Journal of Applied Physics, vol. 112, pp. 1–7, 2012.
  • [7] N. Sanpo, C. Wen, C.C. Berndt, J. Wang, “Antibacterial properties of spinel ferrite nanoparticles, in: Microbial Pathogens and Strategies for Combating Them,” Science, Technology and Education (A. Méndez-Vilas, Ed.), pp. 239–250, 2013.
  • [8] X. Hu, L. Xiao, X. Jian, W. Zhou, “Synthesis of mesoporous silica-embedded TiO2 loaded with Ag nanoparticles for photocatalytic hydrogen evolution from water splitting,” Journal of Wuhan University of Technology- Materials Science Edition, vol. 32, pp. 67–75, 2017.
  • [9] Y. Chen, Y. Deng, Y. Pu, B. Tang, Y. Su, J. Tang, “One pot preparation of silver nanoparticles decorated TiO2 mesoporous microspheres with enhanced antibacterial activity,” Materials Science and Engineering C, vol. 65, pp. 27–32, 2016.
  • [10] M. Rai, A. Yadav, A. Gade, “Silver nanoparticles as a new generation of antimicrobials,” Biotechnology Advances, vol. 27, pp. 76–83, 2009.
  • [11] S.W. Chook, C.H. Chia, S. Zakaria, M.K. Ayob, K.L. Chee, N.M. Huang, H.M. Neoh, H.N. Lim, R. Jamal, R. Rahman, “Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method,” Nanoscale Research Letters, vol. 7, pp. 1–7, 2012.
  • [12] R. Verma, V.B. Chaudhary, L. Nain, A.K. Srivastava, Antibacterial characteristics of TiO2 nano-objects and their interaction with biofilm,” Materials Technology, vol. 32, pp. 385–390, 2017.
  • [13] C.M.N. Chan, A.M.C. Ng, M.K. Fung, H.S. Cheng, M.Y. Guo, A.B. Djurišić, F.C.C. Leung, W.K. Chan, “Antibacterial and photocatalytic activities of TiO2 nanotubes,” Journal of Experimental Nanoscience, vol. 8, pp. 859–867, 2013.
  • [14] C. Cao, J. Huang, L. Li, C. Zhao, J. Yao, “Highly dispersed Ag/TiO2 via adsorptive self-assembly for bactericidal application,” RSC Advances, vol. 7, pp. 13347–13352, 2017.
  • [15] J. Zhang, X. Liu, X. Suo, P. Li, B. Liu, H. Shi, “Facile synthesis of Ag/AgCl/TiO 2 plasmonic photocatalyst with efficiently antibacterial activity,” Materials Letters, vol. 198, pp. 164–167, 2017.
  • [16] W. Gu, Q. Xie, C. Qi, L. Zhao, D. Wu, “Phosphate removal using zinc ferrite synthesized through a facile solvothermal technique,” Powder Technology, vol. 301, pp. 723–729, 2016.
  • [17] S. Çakar, M. Özacar, “The effect of iron complexes of quercetin on dye-sensitized solar cell efficiency,” Journal of Photochemistry & Photobiology, A: Chemistry, vol. 346, pp. 512–522, 2017.
  • [18] N. Güy, M. Özacar, “The influence of noble metals on photocatalytic activity of ZnO for Congo red degradation,” International Journal of Hydrogen Energy, vol. 41, pp. 20100–20112, 2016.
  • [19] X. Chen, Y. Dai, T. Liu, J. Guo, X. Wang, F. Li, “Magnetic core–shell carbon microspheres (CMSs)@ZnFe2O4/Ag3PO4 composite with enhanced photocatalytic activity and stability under visible light irradiation,” Journal of Molecular Catalysis A: Chemical, vol. 409, pp. 198–206, 2015.
  • [20] R. Liu, H. Ge, X. Wang, J. Luo, Z. Li, X. Liu, “Three-dimensional Ag–tannic acid–graphene as an antibacterial material,” New Journal of Chemistry, vol. 40, pp. 6332–6339, 2016.
  • [21] Z. Yang, Y. Wan, G. Xiong, D. Li, Q. Li, C. Ma, R. Guo, H. Luo, “Facile synthesis of ZnFe2O4/reduced graphene oxide nanohybrids for enhanced microwave absorption properties,” Materials Research Bulletin, vol. 61, pp. 292–297, 2015.
  • [22] L. Zhang, C. Ni, H. Jiu, C. Xie, J. Yan, G. Qi, “One-pot synthesis of Ag-TiO2/reduced graphene oxide nanocomposite for high performance of adsorption and photocatalysis,” Ceramics International, vol. 43, pp. 5450–5456, 2017.
  • [23] R. Rahimi, M. Heidari-Golafzani, M. Rabbani, “Preparation and photocatalytic application of ZnFe2O4@ZnO core–shell nanostructures,” Superlattices and Microstructures, vol. 85, pp. 497–503, 2015.
  • [24] G. J. Rani, M. A. J. Rajan, “Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye,” Research on Chemical Intermediates, vol. 43, pp. 2669–2690, 2017.
  • [25] J. Shen, G. Ma, J. Zhang, W. Quan, L. Li, “Facile fabrication of magnetic reduced graphene oxide-ZnFe2O4 composites with enhanced adsorption and photocatalytic activity,” Applied Surface Science, vol. 359, pp. 455–468, 2015.
  • [26] Y. Zhao, Z. Huang, W. Chang, C. Wei, X. Feng, L. Ma, X. Qi, Z. Li, “Microwave-assisted solvothermal synthesis of hierarchical TiO2 microspheres for efficient electro-field-assisted-photocatalytic removal of tributyltin in tannery wastewater,” Chemosphere, vol. 179, pp. 75–83, 2017.
  • [27] J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, M. H. Cho, “Antimicrobial effects of silver nanoparticles,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 3, pp. 95–101, 2007.
  • [28] Y. Z. Wang, Y. S. Wu, X. X. Xue, H. Yang, Z. H. Liu, “Microstructure and antibacterial activity of ions (Ce, Y, or B)-doped Zn-TiO2: a comparative study,” Materials Technology, vol. 32, pp. 310–320, 2017.
  • [29] A. Allafchian, S. A. H. Jalali, H. Bahramian, H. Ahmadvand, “Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite,” Journal of Magnetism and Magnetic Materials, vol. 404, pp. 14–20, 2016.
Year 2018, Volume: 22 Issue: 6, 1720 - 1726, 01.12.2018
https://doi.org/10.16984/saufenbilder.373607

Abstract

References

  • [1] P. Guo, G. Zhang, J. Yu, H. Li, X.S. Zhao, “Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 395, pp. 168–174, 2012.
  • [2] G. Tong, F. Du, W. Wu, R. Wu, F. Liu, Y. Liang, “Enhanced reactive oxygen species (ROS) yields and antibacterial activity of spongy ZnO/ZnFe2O4 hybrid micro-hexahedra selectively synthesized through a versatile glucose-engineered co-precipitation/annealing process,” Journal of Materials Chemistry B, vol. 1, pp. 2647–2657, 2013.
  • [3] R. Liu, M. Lv, Q. Wang, H. Li, P. Guo, X.S. Zhao, “Solvothermal synthesis of size-tunable ZnFe2O4 colloidal nanocrystal assemblies and their electrocatalytic activity towards hydrogen peroxide,” Journal of Magnetism and Magnetic Materials, vol. 424, pp. 155–160, 2017.
  • [4] P. Guo, M. Lv, G. Han, C. Wen, Q. Wang, H. Li, X.S. Zhao, “Solvothermal synthesis of hierarchical colloidal nanocrystal assemblies of ZnFe2O4 and their application in water treatment,” Materials, vol. 9, no. 806, pp. 1-10, 2016.
  • [5] R. Ji, C. Cao, Z. Chen, H. Zhai, J. Bai, “Solvothermal synthesis of CoxFe3−xO4 spheres and their microwave absorption properties, Journal of Materials Chemistry C, vol. 2, pp. 5944–5954, 2014.
  • [6] N. Sanpo, C.C. Berndt, J. Wang, “Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods,” Journal of Applied Physics, vol. 112, pp. 1–7, 2012.
  • [7] N. Sanpo, C. Wen, C.C. Berndt, J. Wang, “Antibacterial properties of spinel ferrite nanoparticles, in: Microbial Pathogens and Strategies for Combating Them,” Science, Technology and Education (A. Méndez-Vilas, Ed.), pp. 239–250, 2013.
  • [8] X. Hu, L. Xiao, X. Jian, W. Zhou, “Synthesis of mesoporous silica-embedded TiO2 loaded with Ag nanoparticles for photocatalytic hydrogen evolution from water splitting,” Journal of Wuhan University of Technology- Materials Science Edition, vol. 32, pp. 67–75, 2017.
  • [9] Y. Chen, Y. Deng, Y. Pu, B. Tang, Y. Su, J. Tang, “One pot preparation of silver nanoparticles decorated TiO2 mesoporous microspheres with enhanced antibacterial activity,” Materials Science and Engineering C, vol. 65, pp. 27–32, 2016.
  • [10] M. Rai, A. Yadav, A. Gade, “Silver nanoparticles as a new generation of antimicrobials,” Biotechnology Advances, vol. 27, pp. 76–83, 2009.
  • [11] S.W. Chook, C.H. Chia, S. Zakaria, M.K. Ayob, K.L. Chee, N.M. Huang, H.M. Neoh, H.N. Lim, R. Jamal, R. Rahman, “Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method,” Nanoscale Research Letters, vol. 7, pp. 1–7, 2012.
  • [12] R. Verma, V.B. Chaudhary, L. Nain, A.K. Srivastava, Antibacterial characteristics of TiO2 nano-objects and their interaction with biofilm,” Materials Technology, vol. 32, pp. 385–390, 2017.
  • [13] C.M.N. Chan, A.M.C. Ng, M.K. Fung, H.S. Cheng, M.Y. Guo, A.B. Djurišić, F.C.C. Leung, W.K. Chan, “Antibacterial and photocatalytic activities of TiO2 nanotubes,” Journal of Experimental Nanoscience, vol. 8, pp. 859–867, 2013.
  • [14] C. Cao, J. Huang, L. Li, C. Zhao, J. Yao, “Highly dispersed Ag/TiO2 via adsorptive self-assembly for bactericidal application,” RSC Advances, vol. 7, pp. 13347–13352, 2017.
  • [15] J. Zhang, X. Liu, X. Suo, P. Li, B. Liu, H. Shi, “Facile synthesis of Ag/AgCl/TiO 2 plasmonic photocatalyst with efficiently antibacterial activity,” Materials Letters, vol. 198, pp. 164–167, 2017.
  • [16] W. Gu, Q. Xie, C. Qi, L. Zhao, D. Wu, “Phosphate removal using zinc ferrite synthesized through a facile solvothermal technique,” Powder Technology, vol. 301, pp. 723–729, 2016.
  • [17] S. Çakar, M. Özacar, “The effect of iron complexes of quercetin on dye-sensitized solar cell efficiency,” Journal of Photochemistry & Photobiology, A: Chemistry, vol. 346, pp. 512–522, 2017.
  • [18] N. Güy, M. Özacar, “The influence of noble metals on photocatalytic activity of ZnO for Congo red degradation,” International Journal of Hydrogen Energy, vol. 41, pp. 20100–20112, 2016.
  • [19] X. Chen, Y. Dai, T. Liu, J. Guo, X. Wang, F. Li, “Magnetic core–shell carbon microspheres (CMSs)@ZnFe2O4/Ag3PO4 composite with enhanced photocatalytic activity and stability under visible light irradiation,” Journal of Molecular Catalysis A: Chemical, vol. 409, pp. 198–206, 2015.
  • [20] R. Liu, H. Ge, X. Wang, J. Luo, Z. Li, X. Liu, “Three-dimensional Ag–tannic acid–graphene as an antibacterial material,” New Journal of Chemistry, vol. 40, pp. 6332–6339, 2016.
  • [21] Z. Yang, Y. Wan, G. Xiong, D. Li, Q. Li, C. Ma, R. Guo, H. Luo, “Facile synthesis of ZnFe2O4/reduced graphene oxide nanohybrids for enhanced microwave absorption properties,” Materials Research Bulletin, vol. 61, pp. 292–297, 2015.
  • [22] L. Zhang, C. Ni, H. Jiu, C. Xie, J. Yan, G. Qi, “One-pot synthesis of Ag-TiO2/reduced graphene oxide nanocomposite for high performance of adsorption and photocatalysis,” Ceramics International, vol. 43, pp. 5450–5456, 2017.
  • [23] R. Rahimi, M. Heidari-Golafzani, M. Rabbani, “Preparation and photocatalytic application of ZnFe2O4@ZnO core–shell nanostructures,” Superlattices and Microstructures, vol. 85, pp. 497–503, 2015.
  • [24] G. J. Rani, M. A. J. Rajan, “Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye,” Research on Chemical Intermediates, vol. 43, pp. 2669–2690, 2017.
  • [25] J. Shen, G. Ma, J. Zhang, W. Quan, L. Li, “Facile fabrication of magnetic reduced graphene oxide-ZnFe2O4 composites with enhanced adsorption and photocatalytic activity,” Applied Surface Science, vol. 359, pp. 455–468, 2015.
  • [26] Y. Zhao, Z. Huang, W. Chang, C. Wei, X. Feng, L. Ma, X. Qi, Z. Li, “Microwave-assisted solvothermal synthesis of hierarchical TiO2 microspheres for efficient electro-field-assisted-photocatalytic removal of tributyltin in tannery wastewater,” Chemosphere, vol. 179, pp. 75–83, 2017.
  • [27] J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, M. H. Cho, “Antimicrobial effects of silver nanoparticles,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 3, pp. 95–101, 2007.
  • [28] Y. Z. Wang, Y. S. Wu, X. X. Xue, H. Yang, Z. H. Liu, “Microstructure and antibacterial activity of ions (Ce, Y, or B)-doped Zn-TiO2: a comparative study,” Materials Technology, vol. 32, pp. 310–320, 2017.
  • [29] A. Allafchian, S. A. H. Jalali, H. Bahramian, H. Ahmadvand, “Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag-TiO2 nanocomposite,” Journal of Magnetism and Magnetic Materials, vol. 404, pp. 14–20, 2016.
There are 29 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Keziban Atacan

Nuray Güy

Soner Çakar

Publication Date December 1, 2018
Submission Date January 2, 2018
Acceptance Date May 10, 2018
Published in Issue Year 2018 Volume: 22 Issue: 6

Cite

APA Atacan, K., Güy, N., & Çakar, S. (2018). Preparation and antibacterial activity of solvothermal synthesized ZnFe2O4/Ag-TiO2 nanocomposite. Sakarya University Journal of Science, 22(6), 1720-1726. https://doi.org/10.16984/saufenbilder.373607
AMA Atacan K, Güy N, Çakar S. Preparation and antibacterial activity of solvothermal synthesized ZnFe2O4/Ag-TiO2 nanocomposite. SAUJS. December 2018;22(6):1720-1726. doi:10.16984/saufenbilder.373607
Chicago Atacan, Keziban, Nuray Güy, and Soner Çakar. “Preparation and Antibacterial Activity of Solvothermal Synthesized ZnFe2O4/Ag-TiO2 Nanocomposite”. Sakarya University Journal of Science 22, no. 6 (December 2018): 1720-26. https://doi.org/10.16984/saufenbilder.373607.
EndNote Atacan K, Güy N, Çakar S (December 1, 2018) Preparation and antibacterial activity of solvothermal synthesized ZnFe2O4/Ag-TiO2 nanocomposite. Sakarya University Journal of Science 22 6 1720–1726.
IEEE K. Atacan, N. Güy, and S. Çakar, “Preparation and antibacterial activity of solvothermal synthesized ZnFe2O4/Ag-TiO2 nanocomposite”, SAUJS, vol. 22, no. 6, pp. 1720–1726, 2018, doi: 10.16984/saufenbilder.373607.
ISNAD Atacan, Keziban et al. “Preparation and Antibacterial Activity of Solvothermal Synthesized ZnFe2O4/Ag-TiO2 Nanocomposite”. Sakarya University Journal of Science 22/6 (December 2018), 1720-1726. https://doi.org/10.16984/saufenbilder.373607.
JAMA Atacan K, Güy N, Çakar S. Preparation and antibacterial activity of solvothermal synthesized ZnFe2O4/Ag-TiO2 nanocomposite. SAUJS. 2018;22:1720–1726.
MLA Atacan, Keziban et al. “Preparation and Antibacterial Activity of Solvothermal Synthesized ZnFe2O4/Ag-TiO2 Nanocomposite”. Sakarya University Journal of Science, vol. 22, no. 6, 2018, pp. 1720-6, doi:10.16984/saufenbilder.373607.
Vancouver Atacan K, Güy N, Çakar S. Preparation and antibacterial activity of solvothermal synthesized ZnFe2O4/Ag-TiO2 nanocomposite. SAUJS. 2018;22(6):1720-6.