Research Article
BibTex RIS Cite
Year 2020, Volume: 24 Issue: 2, 287 - 300, 01.04.2020
https://doi.org/10.16984/saufenbilder.603756

Abstract

References

  • [1] Medicine NA of SE and. Commercial Aircraft Propulsion and Energy Systems Research. 2016. doi:10.17226/23490.
  • [2] Mcdonald CF, Massardo AF, Rodgers C, Stone A, Mcdonald CF, Rodgers C, et al. Recuperated gas turbine aeroengines . Part III : engine concepts for reduced emissions , lower fuel consumption , and noise abatement 2008. doi:10.1108/00022660810882773.
  • [3] Thulukkanam K. Heat exchanger design handbook 2nd Edition. 2013.
  • [4] Ramesh K. Shah, Dušan P. Sekulic. Fundamentals of Heat Exchanger Design. 2003.
  • [5] Spakovsky) ZS. Thermodynamics and Propulsion. n.d.
  • [6] Thakre PB, Pachghare PR. Performance Analysis on Compact Heat Exchanger. Mater Today Proc 2017;4:8447–53. doi:10.1016/j.matpr.2017.07.190.
  • [7] Vr R, R AK. Parametric Study of Heat Transfer and Pressure Drop Characteristics of a Rectangular Offset Strip Fin Compact Heat Exchanger 2018;71:1381–6. doi:10.3303/CET1871231.
  • [8] Doğan B. EXPERIMENTAL ANALYSIS OF THE EFFECT OF COLD FLUID INLET TEMPERATURE ON THE THERMAL PERFORMANCE OF A HEAT EXCHANGER 2016;2:583–92.
  • [9] Asadi M, Khoshkhoo RH. Effects of mass flow rate in terms of pressure drop and heat transfer characteristics 2013;1:5–11.
  • [10] Panthee P. Testing and Characterising the Performance of Heat Exchangers 2017.
  • [11] Dewatwal J. DESIGN OF COMPACT PLATE FIN HEAT EXCHANGER. National Institute of Technology Rourkela, 2009.
  • [12] Aral MC, Ho M, Suhermanto M. Heat Transfer Modelling of a Parallel Flow Micro Channel / Louvered Fin Condenser Using Refrigerants R134a and R1234yf n.d.:1–11.
  • [13] Kakaç, Sadik; Liu, Hongtan; Pramuanjaroenkij A. HEAT EXCHANGERS 3rd Edition. CRC Press, Taylor & Francis Group; 2012.
  • [14] Javaherdeh K, Vaisi A, Moosavi R. The effects of fin height , fin-tube contact thickness and louver length on the performance of a compact fin-and-tube heat exchanger 2018;36:825–34.

Parametric Analysis of a Plain-Fin Compact Heat Exchanger for a Small-Scale Gas Turbine

Year 2020, Volume: 24 Issue: 2, 287 - 300, 01.04.2020
https://doi.org/10.16984/saufenbilder.603756

Abstract

The influence of the thermal parameters of a Plain-Fin Compact Heat Exchanger on its performance is examined in this paper. The objective of this work is to analyse the effect of the different flow and geometric parameters on the output performance of a plain fin compact heat exchanger (PFCHE) designed to be used on a small-scale gas turbine and how these parameters can be used for the optimisation of PFCHEs.
In this work, we examined the effects of the variation of input parameters of a plain-fin compact heat exchanger (fin length, fin height, fin thickness, mass flow rate of air and turbine exhaust gas) on the output performance of the heat exchanger (Overall heat exchanger efficiency, fin heat transfer efficiency and the outlet temperatures). The analytical expressions for the outlet temperatures and heat exchanger efficiencies were derived and analysed. Then the derived model was designed and simulated using CFD codes. Also, from the derived expressions, the performance model of the heat exchanger was programmed for analysis. From the results, it shows that the effectiveness (e-value), fin length, fin height and mass flow rates of the gases influence performance of a plain-fin compact heat exchanger. A 50% reduction in fin height can cause as much as an 18% increase in the fin efficiency of the heat exchanger. While a 50% increase in the effectiveness value can cause as much as a 40% increase in the outlet temperature.

References

  • [1] Medicine NA of SE and. Commercial Aircraft Propulsion and Energy Systems Research. 2016. doi:10.17226/23490.
  • [2] Mcdonald CF, Massardo AF, Rodgers C, Stone A, Mcdonald CF, Rodgers C, et al. Recuperated gas turbine aeroengines . Part III : engine concepts for reduced emissions , lower fuel consumption , and noise abatement 2008. doi:10.1108/00022660810882773.
  • [3] Thulukkanam K. Heat exchanger design handbook 2nd Edition. 2013.
  • [4] Ramesh K. Shah, Dušan P. Sekulic. Fundamentals of Heat Exchanger Design. 2003.
  • [5] Spakovsky) ZS. Thermodynamics and Propulsion. n.d.
  • [6] Thakre PB, Pachghare PR. Performance Analysis on Compact Heat Exchanger. Mater Today Proc 2017;4:8447–53. doi:10.1016/j.matpr.2017.07.190.
  • [7] Vr R, R AK. Parametric Study of Heat Transfer and Pressure Drop Characteristics of a Rectangular Offset Strip Fin Compact Heat Exchanger 2018;71:1381–6. doi:10.3303/CET1871231.
  • [8] Doğan B. EXPERIMENTAL ANALYSIS OF THE EFFECT OF COLD FLUID INLET TEMPERATURE ON THE THERMAL PERFORMANCE OF A HEAT EXCHANGER 2016;2:583–92.
  • [9] Asadi M, Khoshkhoo RH. Effects of mass flow rate in terms of pressure drop and heat transfer characteristics 2013;1:5–11.
  • [10] Panthee P. Testing and Characterising the Performance of Heat Exchangers 2017.
  • [11] Dewatwal J. DESIGN OF COMPACT PLATE FIN HEAT EXCHANGER. National Institute of Technology Rourkela, 2009.
  • [12] Aral MC, Ho M, Suhermanto M. Heat Transfer Modelling of a Parallel Flow Micro Channel / Louvered Fin Condenser Using Refrigerants R134a and R1234yf n.d.:1–11.
  • [13] Kakaç, Sadik; Liu, Hongtan; Pramuanjaroenkij A. HEAT EXCHANGERS 3rd Edition. CRC Press, Taylor & Francis Group; 2012.
  • [14] Javaherdeh K, Vaisi A, Moosavi R. The effects of fin height , fin-tube contact thickness and louver length on the performance of a compact fin-and-tube heat exchanger 2018;36:825–34.
There are 14 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Princely Kolle Epie 0000-0001-6970-3423

Can Haşimoğlu This is me 0000-0002-5313-1229

Göhkan Coşkun 0000-0003-1485-4325

Hakan Serhad Soyhan

Publication Date April 1, 2020
Submission Date August 8, 2019
Acceptance Date October 22, 2019
Published in Issue Year 2020 Volume: 24 Issue: 2

Cite

APA Epie, P. K., Haşimoğlu, C., Coşkun, G., Soyhan, H. S. (2020). Parametric Analysis of a Plain-Fin Compact Heat Exchanger for a Small-Scale Gas Turbine. Sakarya University Journal of Science, 24(2), 287-300. https://doi.org/10.16984/saufenbilder.603756
AMA Epie PK, Haşimoğlu C, Coşkun G, Soyhan HS. Parametric Analysis of a Plain-Fin Compact Heat Exchanger for a Small-Scale Gas Turbine. SAUJS. April 2020;24(2):287-300. doi:10.16984/saufenbilder.603756
Chicago Epie, Princely Kolle, Can Haşimoğlu, Göhkan Coşkun, and Hakan Serhad Soyhan. “Parametric Analysis of a Plain-Fin Compact Heat Exchanger for a Small-Scale Gas Turbine”. Sakarya University Journal of Science 24, no. 2 (April 2020): 287-300. https://doi.org/10.16984/saufenbilder.603756.
EndNote Epie PK, Haşimoğlu C, Coşkun G, Soyhan HS (April 1, 2020) Parametric Analysis of a Plain-Fin Compact Heat Exchanger for a Small-Scale Gas Turbine. Sakarya University Journal of Science 24 2 287–300.
IEEE P. K. Epie, C. Haşimoğlu, G. Coşkun, and H. S. Soyhan, “Parametric Analysis of a Plain-Fin Compact Heat Exchanger for a Small-Scale Gas Turbine”, SAUJS, vol. 24, no. 2, pp. 287–300, 2020, doi: 10.16984/saufenbilder.603756.
ISNAD Epie, Princely Kolle et al. “Parametric Analysis of a Plain-Fin Compact Heat Exchanger for a Small-Scale Gas Turbine”. Sakarya University Journal of Science 24/2 (April 2020), 287-300. https://doi.org/10.16984/saufenbilder.603756.
JAMA Epie PK, Haşimoğlu C, Coşkun G, Soyhan HS. Parametric Analysis of a Plain-Fin Compact Heat Exchanger for a Small-Scale Gas Turbine. SAUJS. 2020;24:287–300.
MLA Epie, Princely Kolle et al. “Parametric Analysis of a Plain-Fin Compact Heat Exchanger for a Small-Scale Gas Turbine”. Sakarya University Journal of Science, vol. 24, no. 2, 2020, pp. 287-00, doi:10.16984/saufenbilder.603756.
Vancouver Epie PK, Haşimoğlu C, Coşkun G, Soyhan HS. Parametric Analysis of a Plain-Fin Compact Heat Exchanger for a Small-Scale Gas Turbine. SAUJS. 2020;24(2):287-300.

Sakarya University Journal of Science (SAUJS)