Research Article
BibTex RIS Cite

Removal of Reactive Black 5 from Polluted Solutions by Electrocoagulation: Modelling Experimental Data Using Artificial Neural Networks

Year 2020, Volume: 24 Issue: 4, 712 - 724, 01.08.2020
https://doi.org/10.16984/saufenbilder.698146

Abstract

The wide range of today's industry increases the diversity of pollutants in the wastewater characteristics. In particular, the wastewater of the textile industry is highly colored. Different techniques are used for color removal of dyes from wastewater. In this work, the removal efficiency of the textile dye (Reactive Black 5) at different current densities (48.5 A/m2, 97.18 A/m2, 194.36 A/m2, 291.5 A/m2, 388.7 A/m2) was investigated by electrocoagulation method. The dye concentration of wastewater prepared in the laboratory scale was adjusted to 100 mg/L. Two iron electrodes and 3 g NaCl were used in the electrocoagulation system. The samples which taken periodically were measured after the centrifugal processes with the UV spectrophotometer. The experimental results were also modelled with artificial neural networks (ANNs). As a result of the experiments, approximately 90-100% color removal efficiency was obtained. According to the modelling study, the ANNs can predict the color removal efficiency with coefficient of determination (R2) between the experimental and predicted output variable reached up to 0.99.

Supporting Institution

Sakarya Üniversirsitesi

Project Number

2017-02-04-026

Thanks

This research is financially supported by BAP Project (2017-02-04-026), funded by Sakarya University, Turkey.

References

  • [1] Noreen, U., Ahmed, Z., Khalid, A., Di Serafino, A., Habiba, U., Ali, F., and Hussain, M., “Water pollution and occupational health hazards caused by the marble industries in district Mardan, Pakistan”, Environ. Technol. Innov., 16, p. 100470, 2019.
  • [2] Natarajan, S., Bajaj, H. C., and Tayade, R. J., “Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process”, J. Environ. Sci., 65, pp. 201–222, 2018.
  • [3] Tavangar, T., Jalali, K., Alaei Shahmirzadi, M. A., and Karimi, M., “Toward real textile wastewater treatment: Membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation – Nanofiltration process”, Sep. Purif. Technol., 216, pp. 115–125, 2019.
  • [4] Moussavi, G. and Mahmoudi, M., “Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles”, J. Hazard. Mater., 168(2–3), pp. 806–812, 2009.
  • [5] Jayasantha Kumari, H., Krishnamoorthy, P., Arumugam, T. K., Radhakrishnan, S., and Vasudevan, D., “An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent”, Int. J. Biol. Macromol., 96, pp. 324–333, 2017.
  • [6] Khemila, B., Merzouk, B., Chouder, A., Zidelkhir, R., Leclerc, J.-P., and Lapicque, F., “Removal of a textile dye using photovoltaic electrocoagulation”, Sustain. Chem. Pharm., 7, pp. 27–35, 2018.
  • [7] Pajootan, E., Arami, M., and Mahmoodi, N. M., “Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters”, J. Taiwan Inst. Chem. Eng., 43(2), pp. 282–290, 2012.
  • [8] Keyikoglu, R., Can, O. T., Aygun, A., and Tek, A., “Comparison of the effects of various supporting electrolytes on the treatment of a dye solution by electrocoagulation process”, Colloid Interface Sci. Commun., 33, p. 100210, 2019.
  • [9] Tian S., Xu S., Liu J., He C., Xiong Y., Feng P., “Highly efficient removal of both cationic and anionic dyes from wastewater with a water-stable and eco-friendly Fe-MOF via host-guest encapsulation”, J. Clean. Prod., 239, p. 117767, 2019.
  • [10] Beluci, N. de C. L., Mateus, G. A. P., Miyashiro, C. S., Homem, N. C., Gomes, R. G., Fagundes-Klen, M. R., Bergamasco, R., and Vieira, A. M. S., “Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye”, Sci. Total Environ., 664, pp. 222–229, 2019.
  • [11] Ya V., Martin N., Choo K., Chou Y., Lee S., Le N., Li C., “High-pressure electrocoagulation system with periodic air replenishment for efficient dye wastewater treatment: Reaction dynamics and cost evaluation”, J. Clean. Prod., 213, pp. 1127–1134, 2019.
  • [12] Santhy, K. and Selvapathy, P., “Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon”, Bioresour. Technol., 97(11), pp. 1329–1336, 2006.
  • [13] Kocaer, F. O. and Alkan, U., “Boyar madde içeren tekstil atıksularının arıtım alternatifleri”, p. 9 (n.d.).
  • [14] Hassan, S. S. M., Awwad, N. S., and Aboterika, A. H. A., “Removal of synthetic reactive dyes from textile wastewater by Sorel’s cement”, J. Hazard. Mater., 162(2–3), pp. 994–999, 2009.
  • [15] Papic, S., “Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process”, Dyes Pigments, 62(3), pp. 291–298, 2004.
  • [16] Khan, A. J., Song, J., Ahmed, K., Rahim, A., Onófrio Volpe, P. L., and Rehman, F., “Mesoporous silica MCM-41, SBA-15 and derived bridged polysilsesquioxane SBA-PMDA for the selective removal of textile reactive dyes from wastewater”, J. Mol. Liq., p. 111957, 2019.
  • [17] Núñez, J., Yeber, M., Cisternas, N., Thibaut, R., Medina, P., and Carrasco, C., “Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry”, J. Hazard. Mater., 371, pp. 705–711, 2019.
  • [18] Babu, A. N., Reddy, D. S., Sharma, P., Kumar, G. S., Ravindhranath, K., and Mohan, G. V. K., “Removal of Hazardous Indigo Carmine Dye from Waste Water Using Treated Red Mud”, Mater. Today Proc., 17, pp. 198–208, 2019.
  • [19] Meriç, S., Kaptan, D., and Ölmez, T., “Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process”, Chemosphere, 54(3), pp. 435–441, 2004.
  • [20] Barhoumi, A., “High-rate humic acid removal from cellulose and paper industry wastewater by combining electrocoagulation process with adsorption onto granular activated carbon”, Ind. Crops Prod. 140, 111715, 2019.
  • [21] El-Zahhar, A. A., Awwad, N. S., and El-Katori, E. E., “Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite”, J. Mol. Liq., 199, pp. 454–461, 2014.
  • [22] İlhan F., Kurt U., Apaydın Ö., Arslankaya E., M.M., “Elektrokimyasal Arıtım ve Uygulamaları: Katı Atık Sızıntı Suyu Çalışması”, 18 (2-3), pp. 3–12, 2008.
  • [23] Bahadir, E. B., “Tekstil endüstrisi arıtılmış atıksularında renk ve öncelikli kirleticilerin ozon teknolojisi ile gideriminin araştırılması”, Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Master Tezi, p. 140, (2012).
  • [24] Hansen, H. K., Peña, S. F., Gutiérrez, C., Lazo, A., Lazo, P., and Ottosen, L. M., “Selenium removal from petroleum refinery wastewater using an electrocoagulation technique”, J. Hazard. Mater., 364, pp. 78–81, 2019.
  • [25] Kim, T., Kim, T.-K., and Zoh, K.-D., “Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes”, J. Water Process Eng., 33, p. 101109, 2020.
  • [26] AlJaberi, F. Y., “Studies of autocatalytic electrocoagulation reactor for lead removal from simulated wastewater”, J. Environ. Chem. Eng., 6(5), pp. 6069–6078, 2018.
  • [27] Gong, C., Shen, G., Huang, H., He, P., Zhang, Z., and Ma, B., “Removal and transformation of polycyclic aromatic hydrocarbons during electrocoagulation treatment of an industrial wastewater”, Chemosphere, 168, pp. 58–64, 2017.
  • [28] Dura, A. and Breslin, C. B., “The removal of phosphates using electrocoagulation with Al−Mg anodes”, J. Electroanal. Chem., 846, p. 113161, 2019.
  • [29] Li, L., Qian, G., Ye, L., Hu, X., Yu, X., and Lyu, W., “Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant”, Water Res., 140, pp. 77–89, 2018.
  • [30] Priya, M. and Jeyanthi, J., “Removal of COD, oil and grease from automobile wash water effluent using electrocoagulation technique.”, Microchem. J., 150, p. 104070, 2019.
  • [31] Baran, W., Adamek, E., Jajko, M., and Sobczak, A., “Removal of veterinary antibiotics from wastewater by electrocoagulation”, Chemosphere, 194, pp. 381–389, 2018.
  • [32] Hashim, K. S., “Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia coli removal from wastewater”, J. Water Process Eng., p. 7, 2020.
  • [33] Bener, S., Bulca, Ö., Palas, B., Tekin, G., Atalay, S., and Ersöz, G., “Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study”, Process Saf. Environ. Prot., 129, pp. 47–54, 2019.
  • [34] Firat, M. and Güngör, M., “Askı Madde Konsantrasyonu ve Miktarının Yapay Sinir Ağları ile Belirlenmesi”, 15 (73), pp. 3267–3282, 2004.
  • [35] Zhang, F., Yang, C., Zhu, H., Li, Y., and Gui, W., “An integrated prediction model of heavy metal ion concentration for iron electrocoagulation process”, Chem. Eng. J., p. 123628, 2019.
  • [36] Altınten, A. A., Demirci, Y. D., Pekel, L. C. P., and Alpbaz, M. A., “Elektrokoagülasyon reaktöründe bulanık kontrol metodu ile ph, iletkenlik ve sıcaklığın eş zamanlı kontrolü”, Gazi Üniversitesi Mühendis.-Mimar. Fakültesi Derg., 31(4), p. 0, 2016.
  • [37] Reilly, M., Cooley, A. P., Tito, D., Tassou, S. A., and Theodorou, M. K., “Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters”, Energy Procedia, 161, pp. 343–351, 2019.
  • [38] Isik, Z., Arikan, E. B., Ozay, Y., Bouras, H. D., and Dizge, N., “Electrocoagulation and electrooxidation pre-treatment effect on fungal treatment of pistachio processing wastewater”, Chemosphere, 244, p. 125383, 2020.
  • [39] Llanos J., Cotillas S., Caniares P., Rodrigo M.A., “Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/ electrocoagulation process”, Water Res., 53, pp. 329–338, 2014.
  • [40] da Silva Ribeiro, T., Grossi, C. D., Merma, A. G., dos Santos, B. F., and Torem, M. L., “Removal of boron from mining wastewaters by electrocoagulation method: Modelling experimental data using artificial neural networks”, Miner. Eng., 131, pp. 8–13, 2019.
  • [41] Tchamango S.R., Darchen A., “Investigation and optimization of a new electrocoagulation reactor with horizontal bipolar electrodes: Effect of electrode structure on the reactor performances”, J. Environ. Chem. Eng., 6(4), pp. 4546–4554, 2018.
  • [42] Aygün, A. and Eren, B., “Elektrokoagülayon Yöntemiyle Reaktif Yellow 160 Boyar Maddesinin Giderimi”, Acad. Platf.-J. Eng. Sci., pp. 10–18, 2017.
  • [43] An, C., Huang, G., Yao, Y., and Zhao, S., “Emerging usage of electrocoagulation technology for oil removal from wastewater: A review”, Sci. Total Environ., 579, pp. 537–556, 2017.
  • [44] Ammar, S. H., Ismail, N. N., Ali, A. D., and Abbas, W. M., “Electrocoagulation technique for refinery wastewater treatment in an internal loop split-plate airlift reactor”, J. Environ. Chem. Eng., 7(6), p. 103489, 2019.
  • [45] Deveci, E. Ü., Akarsu, C., Gönen, Ç., and Özay, Y., “Enhancing treatability of tannery wastewater by integrated process of electrocoagulation and fungal via using RSM in an economic perspective”, Process Biochem., 84, pp. 124–133, 2019.
  • [46] Abbasi S., Mirghorayshi M., Zinadini S., Zinatizadeh A.A., “A novel single continuous electrocoagulation process for treatment of licorice processing wastewater: Optimization of operating factors using RSM”, Process Saf. Environ. Prot., 2019.
  • [47] Gürbüz G, Deri Endüstrisi Atıksılarının Elektrokoagülasyon ve Elektro-Fenton Yöntemleri ile Arıtımında RSM Kullanılarak Proses Optimizasyonu “T.C. Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü” Master Tezi, 2015.
  • [48] Hadibarata T, Adnan LA, Yusoff ARM, Yuniarto A, Rubiyatno, Zubir MMFA, vd. Microbial Decolorization of an Azo Dye Reactive Black 5 Using White-Rot Fungus Pleurotus eryngii F032. Water Air Soil Pollut., 224(6),1595, 2013.
  • [49] AlJaberi, F. Y., “Operating cost analysis of a concentric aluminum tubes electrodes electrocoagulation reactor”, Heliyon, 5(8), p. e02307, 2019.
  • [50] Hasani, G., Daraei, H., Shahmoradi, B., Gharibi, F., Maleki, A., Yetilmezsoy, K., and McKay, G., “A novel ANN approach for modeling of alternating pulse current electrocoagulation-flotation (APC-ECF) process: Humic acid removal from aqueous media”, Process Saf. Environ. Prot., 117, pp. 111–124, 2018.
  • [51] Bhatti, M. S., Kapoor, D., Kalia, R. K., Reddy, A. S., and Thukral, A. K., “RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach”, Desalination, 274(1–3), pp. 74–80, 2011.
  • [52] Eren, B., “Prediction Of Adsorption Efficiency For The Removal Of Nickel(II) Ions By Zeolite Using Artificial Neural Network(ANN)”, Fresenius Environ. Bull. 20(12), pp. 3158-3165, 2011.
  • [53] Eren, B., Ileri, R., Dogan, E., Caglar, N., and Koyuncu, I., “Development of artificial neural network for prediction of salt recovery by nanofiltration from textile industry wastewaters”, Desalination Water Treat., 50(1–3), pp. 317–328, 2012.
  • [54] Eren, B., Yaqub, M., and Eyüpoğlu, V., “Assessment of Neural Network training algorithms for the prediction of Polymeric Inclusion Membranes Efficiency”, SAÜ Fen Bilim. Enstitüsü Derg., 20(3), 2016.
  • [55] Eren, B., Yaqub, M., and Eyupoglu, V., “A comparative study of artificial neural network models for the prediction of Cd removal efficiency of polymer inclusion membranes”, Desalination Water Treat., 143, pp. 48–58, 2019.
  • [56] Yaqub, M., Eren, B., and Eyupoglu, V., “Soft computing techniques in prediction Cr(VI) removal efficiency of polymer inclusion membranes”, Environ. Eng. Res., 25(3), pp. 418–425, 2019.
  • [57] Aber, S., Amani-Ghadim, A. R., and Mirzajani, V., “Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network”, J. Hazard. Mater., 171(1–3), pp. 484–490, 2009.
  • [58] Khataee, A. R. and Kasiri, M. B., “Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis”, J. Mol. Catal. Chem., 331(1–2), pp. 86–100, 2010.
  • [59] Daneshvar, N., Khataee, A. R., and Djafarzadeh, N., “The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process”, J. Hazard. Mater., 137(3), pp. 1788–1795, 2006.
  • [60] Dogan, E., Ates, A., Yilmaz, E. C., and Eren, B., “Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand”, Environ. Prog., 27(4), pp. 439–446, 2008.
  • [61] Eyupoglu, V., Eren, B., and Dogan, E., “Prediction of Ionic Cr (VI) Extraction Efficiency in Flat Sheet Supported Liquid Membrane Using Artificial Neural Networks (ANNs)”, Int. J. Environ. Res., 4, pp. 463–470, 2010.
Year 2020, Volume: 24 Issue: 4, 712 - 724, 01.08.2020
https://doi.org/10.16984/saufenbilder.698146

Abstract

Project Number

2017-02-04-026

References

  • [1] Noreen, U., Ahmed, Z., Khalid, A., Di Serafino, A., Habiba, U., Ali, F., and Hussain, M., “Water pollution and occupational health hazards caused by the marble industries in district Mardan, Pakistan”, Environ. Technol. Innov., 16, p. 100470, 2019.
  • [2] Natarajan, S., Bajaj, H. C., and Tayade, R. J., “Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process”, J. Environ. Sci., 65, pp. 201–222, 2018.
  • [3] Tavangar, T., Jalali, K., Alaei Shahmirzadi, M. A., and Karimi, M., “Toward real textile wastewater treatment: Membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation – Nanofiltration process”, Sep. Purif. Technol., 216, pp. 115–125, 2019.
  • [4] Moussavi, G. and Mahmoudi, M., “Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles”, J. Hazard. Mater., 168(2–3), pp. 806–812, 2009.
  • [5] Jayasantha Kumari, H., Krishnamoorthy, P., Arumugam, T. K., Radhakrishnan, S., and Vasudevan, D., “An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent”, Int. J. Biol. Macromol., 96, pp. 324–333, 2017.
  • [6] Khemila, B., Merzouk, B., Chouder, A., Zidelkhir, R., Leclerc, J.-P., and Lapicque, F., “Removal of a textile dye using photovoltaic electrocoagulation”, Sustain. Chem. Pharm., 7, pp. 27–35, 2018.
  • [7] Pajootan, E., Arami, M., and Mahmoodi, N. M., “Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters”, J. Taiwan Inst. Chem. Eng., 43(2), pp. 282–290, 2012.
  • [8] Keyikoglu, R., Can, O. T., Aygun, A., and Tek, A., “Comparison of the effects of various supporting electrolytes on the treatment of a dye solution by electrocoagulation process”, Colloid Interface Sci. Commun., 33, p. 100210, 2019.
  • [9] Tian S., Xu S., Liu J., He C., Xiong Y., Feng P., “Highly efficient removal of both cationic and anionic dyes from wastewater with a water-stable and eco-friendly Fe-MOF via host-guest encapsulation”, J. Clean. Prod., 239, p. 117767, 2019.
  • [10] Beluci, N. de C. L., Mateus, G. A. P., Miyashiro, C. S., Homem, N. C., Gomes, R. G., Fagundes-Klen, M. R., Bergamasco, R., and Vieira, A. M. S., “Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye”, Sci. Total Environ., 664, pp. 222–229, 2019.
  • [11] Ya V., Martin N., Choo K., Chou Y., Lee S., Le N., Li C., “High-pressure electrocoagulation system with periodic air replenishment for efficient dye wastewater treatment: Reaction dynamics and cost evaluation”, J. Clean. Prod., 213, pp. 1127–1134, 2019.
  • [12] Santhy, K. and Selvapathy, P., “Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon”, Bioresour. Technol., 97(11), pp. 1329–1336, 2006.
  • [13] Kocaer, F. O. and Alkan, U., “Boyar madde içeren tekstil atıksularının arıtım alternatifleri”, p. 9 (n.d.).
  • [14] Hassan, S. S. M., Awwad, N. S., and Aboterika, A. H. A., “Removal of synthetic reactive dyes from textile wastewater by Sorel’s cement”, J. Hazard. Mater., 162(2–3), pp. 994–999, 2009.
  • [15] Papic, S., “Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process”, Dyes Pigments, 62(3), pp. 291–298, 2004.
  • [16] Khan, A. J., Song, J., Ahmed, K., Rahim, A., Onófrio Volpe, P. L., and Rehman, F., “Mesoporous silica MCM-41, SBA-15 and derived bridged polysilsesquioxane SBA-PMDA for the selective removal of textile reactive dyes from wastewater”, J. Mol. Liq., p. 111957, 2019.
  • [17] Núñez, J., Yeber, M., Cisternas, N., Thibaut, R., Medina, P., and Carrasco, C., “Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry”, J. Hazard. Mater., 371, pp. 705–711, 2019.
  • [18] Babu, A. N., Reddy, D. S., Sharma, P., Kumar, G. S., Ravindhranath, K., and Mohan, G. V. K., “Removal of Hazardous Indigo Carmine Dye from Waste Water Using Treated Red Mud”, Mater. Today Proc., 17, pp. 198–208, 2019.
  • [19] Meriç, S., Kaptan, D., and Ölmez, T., “Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process”, Chemosphere, 54(3), pp. 435–441, 2004.
  • [20] Barhoumi, A., “High-rate humic acid removal from cellulose and paper industry wastewater by combining electrocoagulation process with adsorption onto granular activated carbon”, Ind. Crops Prod. 140, 111715, 2019.
  • [21] El-Zahhar, A. A., Awwad, N. S., and El-Katori, E. E., “Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite”, J. Mol. Liq., 199, pp. 454–461, 2014.
  • [22] İlhan F., Kurt U., Apaydın Ö., Arslankaya E., M.M., “Elektrokimyasal Arıtım ve Uygulamaları: Katı Atık Sızıntı Suyu Çalışması”, 18 (2-3), pp. 3–12, 2008.
  • [23] Bahadir, E. B., “Tekstil endüstrisi arıtılmış atıksularında renk ve öncelikli kirleticilerin ozon teknolojisi ile gideriminin araştırılması”, Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Master Tezi, p. 140, (2012).
  • [24] Hansen, H. K., Peña, S. F., Gutiérrez, C., Lazo, A., Lazo, P., and Ottosen, L. M., “Selenium removal from petroleum refinery wastewater using an electrocoagulation technique”, J. Hazard. Mater., 364, pp. 78–81, 2019.
  • [25] Kim, T., Kim, T.-K., and Zoh, K.-D., “Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes”, J. Water Process Eng., 33, p. 101109, 2020.
  • [26] AlJaberi, F. Y., “Studies of autocatalytic electrocoagulation reactor for lead removal from simulated wastewater”, J. Environ. Chem. Eng., 6(5), pp. 6069–6078, 2018.
  • [27] Gong, C., Shen, G., Huang, H., He, P., Zhang, Z., and Ma, B., “Removal and transformation of polycyclic aromatic hydrocarbons during electrocoagulation treatment of an industrial wastewater”, Chemosphere, 168, pp. 58–64, 2017.
  • [28] Dura, A. and Breslin, C. B., “The removal of phosphates using electrocoagulation with Al−Mg anodes”, J. Electroanal. Chem., 846, p. 113161, 2019.
  • [29] Li, L., Qian, G., Ye, L., Hu, X., Yu, X., and Lyu, W., “Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant”, Water Res., 140, pp. 77–89, 2018.
  • [30] Priya, M. and Jeyanthi, J., “Removal of COD, oil and grease from automobile wash water effluent using electrocoagulation technique.”, Microchem. J., 150, p. 104070, 2019.
  • [31] Baran, W., Adamek, E., Jajko, M., and Sobczak, A., “Removal of veterinary antibiotics from wastewater by electrocoagulation”, Chemosphere, 194, pp. 381–389, 2018.
  • [32] Hashim, K. S., “Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia coli removal from wastewater”, J. Water Process Eng., p. 7, 2020.
  • [33] Bener, S., Bulca, Ö., Palas, B., Tekin, G., Atalay, S., and Ersöz, G., “Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study”, Process Saf. Environ. Prot., 129, pp. 47–54, 2019.
  • [34] Firat, M. and Güngör, M., “Askı Madde Konsantrasyonu ve Miktarının Yapay Sinir Ağları ile Belirlenmesi”, 15 (73), pp. 3267–3282, 2004.
  • [35] Zhang, F., Yang, C., Zhu, H., Li, Y., and Gui, W., “An integrated prediction model of heavy metal ion concentration for iron electrocoagulation process”, Chem. Eng. J., p. 123628, 2019.
  • [36] Altınten, A. A., Demirci, Y. D., Pekel, L. C. P., and Alpbaz, M. A., “Elektrokoagülasyon reaktöründe bulanık kontrol metodu ile ph, iletkenlik ve sıcaklığın eş zamanlı kontrolü”, Gazi Üniversitesi Mühendis.-Mimar. Fakültesi Derg., 31(4), p. 0, 2016.
  • [37] Reilly, M., Cooley, A. P., Tito, D., Tassou, S. A., and Theodorou, M. K., “Electrocoagulation treatment of dairy processing and slaughterhouse wastewaters”, Energy Procedia, 161, pp. 343–351, 2019.
  • [38] Isik, Z., Arikan, E. B., Ozay, Y., Bouras, H. D., and Dizge, N., “Electrocoagulation and electrooxidation pre-treatment effect on fungal treatment of pistachio processing wastewater”, Chemosphere, 244, p. 125383, 2020.
  • [39] Llanos J., Cotillas S., Caniares P., Rodrigo M.A., “Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/ electrocoagulation process”, Water Res., 53, pp. 329–338, 2014.
  • [40] da Silva Ribeiro, T., Grossi, C. D., Merma, A. G., dos Santos, B. F., and Torem, M. L., “Removal of boron from mining wastewaters by electrocoagulation method: Modelling experimental data using artificial neural networks”, Miner. Eng., 131, pp. 8–13, 2019.
  • [41] Tchamango S.R., Darchen A., “Investigation and optimization of a new electrocoagulation reactor with horizontal bipolar electrodes: Effect of electrode structure on the reactor performances”, J. Environ. Chem. Eng., 6(4), pp. 4546–4554, 2018.
  • [42] Aygün, A. and Eren, B., “Elektrokoagülayon Yöntemiyle Reaktif Yellow 160 Boyar Maddesinin Giderimi”, Acad. Platf.-J. Eng. Sci., pp. 10–18, 2017.
  • [43] An, C., Huang, G., Yao, Y., and Zhao, S., “Emerging usage of electrocoagulation technology for oil removal from wastewater: A review”, Sci. Total Environ., 579, pp. 537–556, 2017.
  • [44] Ammar, S. H., Ismail, N. N., Ali, A. D., and Abbas, W. M., “Electrocoagulation technique for refinery wastewater treatment in an internal loop split-plate airlift reactor”, J. Environ. Chem. Eng., 7(6), p. 103489, 2019.
  • [45] Deveci, E. Ü., Akarsu, C., Gönen, Ç., and Özay, Y., “Enhancing treatability of tannery wastewater by integrated process of electrocoagulation and fungal via using RSM in an economic perspective”, Process Biochem., 84, pp. 124–133, 2019.
  • [46] Abbasi S., Mirghorayshi M., Zinadini S., Zinatizadeh A.A., “A novel single continuous electrocoagulation process for treatment of licorice processing wastewater: Optimization of operating factors using RSM”, Process Saf. Environ. Prot., 2019.
  • [47] Gürbüz G, Deri Endüstrisi Atıksılarının Elektrokoagülasyon ve Elektro-Fenton Yöntemleri ile Arıtımında RSM Kullanılarak Proses Optimizasyonu “T.C. Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü” Master Tezi, 2015.
  • [48] Hadibarata T, Adnan LA, Yusoff ARM, Yuniarto A, Rubiyatno, Zubir MMFA, vd. Microbial Decolorization of an Azo Dye Reactive Black 5 Using White-Rot Fungus Pleurotus eryngii F032. Water Air Soil Pollut., 224(6),1595, 2013.
  • [49] AlJaberi, F. Y., “Operating cost analysis of a concentric aluminum tubes electrodes electrocoagulation reactor”, Heliyon, 5(8), p. e02307, 2019.
  • [50] Hasani, G., Daraei, H., Shahmoradi, B., Gharibi, F., Maleki, A., Yetilmezsoy, K., and McKay, G., “A novel ANN approach for modeling of alternating pulse current electrocoagulation-flotation (APC-ECF) process: Humic acid removal from aqueous media”, Process Saf. Environ. Prot., 117, pp. 111–124, 2018.
  • [51] Bhatti, M. S., Kapoor, D., Kalia, R. K., Reddy, A. S., and Thukral, A. K., “RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach”, Desalination, 274(1–3), pp. 74–80, 2011.
  • [52] Eren, B., “Prediction Of Adsorption Efficiency For The Removal Of Nickel(II) Ions By Zeolite Using Artificial Neural Network(ANN)”, Fresenius Environ. Bull. 20(12), pp. 3158-3165, 2011.
  • [53] Eren, B., Ileri, R., Dogan, E., Caglar, N., and Koyuncu, I., “Development of artificial neural network for prediction of salt recovery by nanofiltration from textile industry wastewaters”, Desalination Water Treat., 50(1–3), pp. 317–328, 2012.
  • [54] Eren, B., Yaqub, M., and Eyüpoğlu, V., “Assessment of Neural Network training algorithms for the prediction of Polymeric Inclusion Membranes Efficiency”, SAÜ Fen Bilim. Enstitüsü Derg., 20(3), 2016.
  • [55] Eren, B., Yaqub, M., and Eyupoglu, V., “A comparative study of artificial neural network models for the prediction of Cd removal efficiency of polymer inclusion membranes”, Desalination Water Treat., 143, pp. 48–58, 2019.
  • [56] Yaqub, M., Eren, B., and Eyupoglu, V., “Soft computing techniques in prediction Cr(VI) removal efficiency of polymer inclusion membranes”, Environ. Eng. Res., 25(3), pp. 418–425, 2019.
  • [57] Aber, S., Amani-Ghadim, A. R., and Mirzajani, V., “Removal of Cr(VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network”, J. Hazard. Mater., 171(1–3), pp. 484–490, 2009.
  • [58] Khataee, A. R. and Kasiri, M. B., “Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis”, J. Mol. Catal. Chem., 331(1–2), pp. 86–100, 2010.
  • [59] Daneshvar, N., Khataee, A. R., and Djafarzadeh, N., “The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process”, J. Hazard. Mater., 137(3), pp. 1788–1795, 2006.
  • [60] Dogan, E., Ates, A., Yilmaz, E. C., and Eren, B., “Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand”, Environ. Prog., 27(4), pp. 439–446, 2008.
  • [61] Eyupoglu, V., Eren, B., and Dogan, E., “Prediction of Ionic Cr (VI) Extraction Efficiency in Flat Sheet Supported Liquid Membrane Using Artificial Neural Networks (ANNs)”, Int. J. Environ. Res., 4, pp. 463–470, 2010.
There are 61 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Bediha Oyar This is me 0000-0003-1683-5531

Beytullah Eren 0000-0001-6747-7004

Abdil Özdemir 0000-0002-0900-0221

Project Number 2017-02-04-026
Publication Date August 1, 2020
Submission Date March 3, 2020
Acceptance Date May 26, 2020
Published in Issue Year 2020 Volume: 24 Issue: 4

Cite

APA Oyar, B., Eren, B., & Özdemir, A. (2020). Removal of Reactive Black 5 from Polluted Solutions by Electrocoagulation: Modelling Experimental Data Using Artificial Neural Networks. Sakarya University Journal of Science, 24(4), 712-724. https://doi.org/10.16984/saufenbilder.698146
AMA Oyar B, Eren B, Özdemir A. Removal of Reactive Black 5 from Polluted Solutions by Electrocoagulation: Modelling Experimental Data Using Artificial Neural Networks. SAUJS. August 2020;24(4):712-724. doi:10.16984/saufenbilder.698146
Chicago Oyar, Bediha, Beytullah Eren, and Abdil Özdemir. “Removal of Reactive Black 5 from Polluted Solutions by Electrocoagulation: Modelling Experimental Data Using Artificial Neural Networks”. Sakarya University Journal of Science 24, no. 4 (August 2020): 712-24. https://doi.org/10.16984/saufenbilder.698146.
EndNote Oyar B, Eren B, Özdemir A (August 1, 2020) Removal of Reactive Black 5 from Polluted Solutions by Electrocoagulation: Modelling Experimental Data Using Artificial Neural Networks. Sakarya University Journal of Science 24 4 712–724.
IEEE B. Oyar, B. Eren, and A. Özdemir, “Removal of Reactive Black 5 from Polluted Solutions by Electrocoagulation: Modelling Experimental Data Using Artificial Neural Networks”, SAUJS, vol. 24, no. 4, pp. 712–724, 2020, doi: 10.16984/saufenbilder.698146.
ISNAD Oyar, Bediha et al. “Removal of Reactive Black 5 from Polluted Solutions by Electrocoagulation: Modelling Experimental Data Using Artificial Neural Networks”. Sakarya University Journal of Science 24/4 (August 2020), 712-724. https://doi.org/10.16984/saufenbilder.698146.
JAMA Oyar B, Eren B, Özdemir A. Removal of Reactive Black 5 from Polluted Solutions by Electrocoagulation: Modelling Experimental Data Using Artificial Neural Networks. SAUJS. 2020;24:712–724.
MLA Oyar, Bediha et al. “Removal of Reactive Black 5 from Polluted Solutions by Electrocoagulation: Modelling Experimental Data Using Artificial Neural Networks”. Sakarya University Journal of Science, vol. 24, no. 4, 2020, pp. 712-24, doi:10.16984/saufenbilder.698146.
Vancouver Oyar B, Eren B, Özdemir A. Removal of Reactive Black 5 from Polluted Solutions by Electrocoagulation: Modelling Experimental Data Using Artificial Neural Networks. SAUJS. 2020;24(4):712-24.