Research Article
BibTex RIS Cite

Neuro Sliding Mode Control for Exoskeletons with 7 DoF

Year 2020, Volume: 24 Issue: 5, 1065 - 1073, 01.10.2020
https://doi.org/10.16984/saufenbilder.710959

Abstract

In this work, a novel neuro-sliding mode controller (NSMC) is developed for a 7 degree of freedom (DoF) upper limb exoskeleton. Even though the regular sliding mode controller (SMC) is very sufficient tool when the unknown dynamics of the system is time invariant, variation in the unknown dynamics cannot be handled by regular SMC. Therefore, two-layer neural network (NN) is used to approximate the exoskeleton dynamics in the structure of the SMC. Stability of the NSMC is developed by using Lyapunov stability criteria. To validate our theoretical claims and to compare NSMC with regular SMC, simulation results are provided at the end of the paper. In the simulation section, advantage of the NSMC over regular SMC is presented in the presence of time-varying unknown exoskeleton dynamics.

Supporting Institution

Tubitak

Project Number

217E138

Thanks

The work described in this paper is supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under project number 217E138.

References

  • TheWorldHealthReport,2008.[Online].Available:http://www.who. int/whr/2008/en
  • S.Barreca,L.Wolf,S.Fasoli,andR.Bohannon,“Treatmentinterventionsforthepareticupperlimbofstrokesurvivors:Acriticalreview,” Neurorehabilitation and Neural Repair, vol. 17, no. 4, pp. 220–226, 2003.
  • B. K. Dinh, M. Xiloyannis, C. W. Antuvan, L. Cappello and L. Masia, "Hierarchical Cascade Controller for Assistance Modulation in a Soft Wearable Arm Exoskeleton," in IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1786-1793, July 2017.
  • J. Huang, W. Huo, W. Xu, S. Mohammed and Y. Amirat, "Control of Upper-Limb Power-Assist Exoskeleton Using a Human-Robot Interface Based on Motion Intention Recognition," in IEEE Transactions on Automation Science and Engineering, vol. 12, no. 4, pp. 1257-1270, Oct. 2015.
  • X. Cui, W. Chen, X. Jin and S. K. Agrawal, "Design of a 7-DOF Cable-Driven Arm Exoskeleton (CAREX-7) and a Controller for Dexterous Motion Training or Assistance," in IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 161-172, Feb. 2017.
  • W. He, Z. Li, Y. Dong and T. Zhao, "Design and Adaptive Control for an Upper Limb Robotic Exoskeleton in Presence of Input Saturation," in IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 1, pp. 97-108, Jan. 2019.
  • H. Hashimoto, “A microprocessor-based robot manipulator control with sliding mode”, IEEE Trans. on Industrial Electronics, vol. 34, no. 1, pp. 11-18, 1987.
  • İ. Yazıcı, and E. K. Yaylacı “Improving Efficiency of the Tip Speed Ratio-MPPT Method for Wind Energy Systems by Using an Integral Sliding Mode Voltage Regulator”, ASME. J. Energy Resour. Technol. May 2018; 140(5):051203. https://doi.org/10.1115/1.4038485.
  • İ. Yazici and E. K. Yaylaci “Fast and robust voltage control of DC–DC boost converter by using fast terminal sliding mode controller”, IET Power Electronics, 2016, 9, (1), p. 120-125, doi: 10.1049/iet-pel.2015.0008
  • Y. Istefanopulos, E. M. Jafarov, and M. N. A. Parlakci, “A new robust continuous sliding mode control for robot manipulators with parameter perturbation”, American Control Conference, pp. 3202-3205, 2002.
  • M. Soltanpour, P. Otadolajam, M. H. Khoban, “Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode”, IET Science, Measurement, & Technology, pp. 322-334, 2015.
  • D. E. Chaouch, Z. Ahmed-Foitih, and M. F. Khelfi,“A sliding mode based control of 2dof robot manipulator using neural network”, International conference on Sciences of Electronics Technologies of Information and Telecommunications, pp. 906-911, 2012.
  • Z. Chen, J. Zhang, Z. Wang, J. Zeng, “Sliding mode control of robot manipulators based on neural network reaching law”, IEEE Conference on Control and Automation, pp. 370-373, 2007.
  • M. Salen and M. F. Khelfi, “Online RBF and fuzzy based sliding mode control of robot manipulator”, International conference on Sciences of Electronics Technologies of Information and Telecommunications, pp. 896-901, 2012.
  • Jarrasse, Nathanael & Proietti, Tommaso & Crocher, Vincent & Robertson, Johanna & Sahbani, Anis & Morel, Guillaume & Roby-Brami, Agnes. (2014). Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients. Frontiers in Human Neuroscience. 8. 10.3389/fnhum.2014.00947.
Year 2020, Volume: 24 Issue: 5, 1065 - 1073, 01.10.2020
https://doi.org/10.16984/saufenbilder.710959

Abstract

Project Number

217E138

References

  • TheWorldHealthReport,2008.[Online].Available:http://www.who. int/whr/2008/en
  • S.Barreca,L.Wolf,S.Fasoli,andR.Bohannon,“Treatmentinterventionsforthepareticupperlimbofstrokesurvivors:Acriticalreview,” Neurorehabilitation and Neural Repair, vol. 17, no. 4, pp. 220–226, 2003.
  • B. K. Dinh, M. Xiloyannis, C. W. Antuvan, L. Cappello and L. Masia, "Hierarchical Cascade Controller for Assistance Modulation in a Soft Wearable Arm Exoskeleton," in IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1786-1793, July 2017.
  • J. Huang, W. Huo, W. Xu, S. Mohammed and Y. Amirat, "Control of Upper-Limb Power-Assist Exoskeleton Using a Human-Robot Interface Based on Motion Intention Recognition," in IEEE Transactions on Automation Science and Engineering, vol. 12, no. 4, pp. 1257-1270, Oct. 2015.
  • X. Cui, W. Chen, X. Jin and S. K. Agrawal, "Design of a 7-DOF Cable-Driven Arm Exoskeleton (CAREX-7) and a Controller for Dexterous Motion Training or Assistance," in IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 161-172, Feb. 2017.
  • W. He, Z. Li, Y. Dong and T. Zhao, "Design and Adaptive Control for an Upper Limb Robotic Exoskeleton in Presence of Input Saturation," in IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 1, pp. 97-108, Jan. 2019.
  • H. Hashimoto, “A microprocessor-based robot manipulator control with sliding mode”, IEEE Trans. on Industrial Electronics, vol. 34, no. 1, pp. 11-18, 1987.
  • İ. Yazıcı, and E. K. Yaylacı “Improving Efficiency of the Tip Speed Ratio-MPPT Method for Wind Energy Systems by Using an Integral Sliding Mode Voltage Regulator”, ASME. J. Energy Resour. Technol. May 2018; 140(5):051203. https://doi.org/10.1115/1.4038485.
  • İ. Yazici and E. K. Yaylaci “Fast and robust voltage control of DC–DC boost converter by using fast terminal sliding mode controller”, IET Power Electronics, 2016, 9, (1), p. 120-125, doi: 10.1049/iet-pel.2015.0008
  • Y. Istefanopulos, E. M. Jafarov, and M. N. A. Parlakci, “A new robust continuous sliding mode control for robot manipulators with parameter perturbation”, American Control Conference, pp. 3202-3205, 2002.
  • M. Soltanpour, P. Otadolajam, M. H. Khoban, “Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode”, IET Science, Measurement, & Technology, pp. 322-334, 2015.
  • D. E. Chaouch, Z. Ahmed-Foitih, and M. F. Khelfi,“A sliding mode based control of 2dof robot manipulator using neural network”, International conference on Sciences of Electronics Technologies of Information and Telecommunications, pp. 906-911, 2012.
  • Z. Chen, J. Zhang, Z. Wang, J. Zeng, “Sliding mode control of robot manipulators based on neural network reaching law”, IEEE Conference on Control and Automation, pp. 370-373, 2007.
  • M. Salen and M. F. Khelfi, “Online RBF and fuzzy based sliding mode control of robot manipulator”, International conference on Sciences of Electronics Technologies of Information and Telecommunications, pp. 896-901, 2012.
  • Jarrasse, Nathanael & Proietti, Tommaso & Crocher, Vincent & Robertson, Johanna & Sahbani, Anis & Morel, Guillaume & Roby-Brami, Agnes. (2014). Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients. Frontiers in Human Neuroscience. 8. 10.3389/fnhum.2014.00947.
There are 15 citations in total.

Details

Primary Language English
Subjects Electrical Engineering, Mechanical Engineering
Journal Section Research Articles
Authors

Haci Mehmet Guzey 0000-0002-2215-9536

Project Number 217E138
Publication Date October 1, 2020
Submission Date March 29, 2020
Acceptance Date August 9, 2020
Published in Issue Year 2020 Volume: 24 Issue: 5

Cite

APA Guzey, H. M. (2020). Neuro Sliding Mode Control for Exoskeletons with 7 DoF. Sakarya University Journal of Science, 24(5), 1065-1073. https://doi.org/10.16984/saufenbilder.710959
AMA Guzey HM. Neuro Sliding Mode Control for Exoskeletons with 7 DoF. SAUJS. October 2020;24(5):1065-1073. doi:10.16984/saufenbilder.710959
Chicago Guzey, Haci Mehmet. “Neuro Sliding Mode Control for Exoskeletons With 7 DoF”. Sakarya University Journal of Science 24, no. 5 (October 2020): 1065-73. https://doi.org/10.16984/saufenbilder.710959.
EndNote Guzey HM (October 1, 2020) Neuro Sliding Mode Control for Exoskeletons with 7 DoF. Sakarya University Journal of Science 24 5 1065–1073.
IEEE H. M. Guzey, “Neuro Sliding Mode Control for Exoskeletons with 7 DoF”, SAUJS, vol. 24, no. 5, pp. 1065–1073, 2020, doi: 10.16984/saufenbilder.710959.
ISNAD Guzey, Haci Mehmet. “Neuro Sliding Mode Control for Exoskeletons With 7 DoF”. Sakarya University Journal of Science 24/5 (October 2020), 1065-1073. https://doi.org/10.16984/saufenbilder.710959.
JAMA Guzey HM. Neuro Sliding Mode Control for Exoskeletons with 7 DoF. SAUJS. 2020;24:1065–1073.
MLA Guzey, Haci Mehmet. “Neuro Sliding Mode Control for Exoskeletons With 7 DoF”. Sakarya University Journal of Science, vol. 24, no. 5, 2020, pp. 1065-73, doi:10.16984/saufenbilder.710959.
Vancouver Guzey HM. Neuro Sliding Mode Control for Exoskeletons with 7 DoF. SAUJS. 2020;24(5):1065-73.