Year 2021,
Volume: 25 Issue: 2, 554 - 562, 15.04.2021
Baha Kanberoğlu
,
Ahmet Yahya Teşneli
Supporting Institution
Sakarya Universitesi
Project Number
2011-50-02-028
References
- [1] B. D. Cordill, S. A. Seguin, and M. S. Ewing, “Shielding effectiveness of composite and aluminum aircraft, model and measurement comparison,” Conf. Rec. - IEEE Instrum. Meas. Technol. Conf., pp. 1408–1413, 2011.
- [2] M. A. Aziz et al., “Shielding effectiveness of composite aircraft: A reverberation chamber and virtual measurement study,” 2012 IEEE I2MTC - Int. Instrum. Meas. Technol. Conf. Proc., pp. 2775–2779, 2012.
- [3] G. G. Gutiérrez et al., “HIRF virtual testing on the C-295 aircraft: On the application of a pass/fail criterion and the FSV method,” IEEE Trans. Electromagn. Compat., vol. 56, no. 4, pp. 854–863, 2014.
- [4] M. H. Vogel, “Impact of lightning and high-intensity radiated fields on cables in aircraft,” IEEE Electromagn. Compat. Mag., vol. 3, no. 2, pp. 56–61, 2014.
- [5] A. Jazzar, E. Clavel, G. Meunier, and E. Vialardi, “Study of lightning effects on aircraft with predominately composite structures,” IEEE Trans. Electromagn. Compat., vol. 56, no. 3, pp. 675–682, 2014.
- [6] L. Huang, C. Gao, F. Guo, and C. Sun, “Lightning Indirect Effects on Helicopter: Numerical Simulation and Experiment Validation,” IEEE Trans. Electromagn. Compat., vol. 59, no. 4, pp. 1171–1179, 2017.
- [7] R. R. Nunes and J. Schuur, “Investigation on the propagation and coupling in aircraft using absorbing films,” IEEE Int. Symp. Electromagn. Compat., vol. 2015-Septm, pp. 322–327, 2015.
- [8] M. R. Cabello et al., “SIVA UAV: A Case Study for the EMC Analysis of Composite Air Vehicles,” IEEE Trans. Electromagn. Compat., vol. 59, no. 4, pp. 1103–1113, 2017.
- [9] V. P. Bui, W. Thitsartarn, E. X. Liu, J. Y. C. Chuan, and E. K. Chua, “EM Performance of Conductive Composite Laminate Made of Nanostructured Materials for Aerospace Application,” IEEE Trans. Electromagn. Compat., vol. 57, no. 5, pp. 1139–1148, 2015.
- [10] B. Kanberoglu, M. . Hilmi Nişanci, and A. Şükran Demirkiran, “Electromagnetic characterization of ceramic material produced with natural zeolite,” Mater. Sci. Semicond. Process., vol. 38, pp. 352–356, 2015.
- [11] M. D’Amore, D. A. Lampasi, M. S. Sarto, A. Tamburrano, V. De Santis, and M. Feliziani, “Optimal design of multifunctional transparent shields against radio frequency electromagnetic fields,” Electromagn. Compat. Symp. Adelaide 2009, EMCSA 2009 - Symp. Proc., pp. 81–86, 2009.
- [12] Y. Corredores, P. Besnier, X. Castel, J. Sol, C. Dupeyrat, and P. Foutrel, “Adjustment of Shielding Effectiveness, Optical Transmission, and Sheet Resistance of Conducting Films Deposited on Glass Substrates,” IEEE Trans. Electromagn. Compat., vol. 59, no. 4, pp. 1070–1078, 2017.
- [13] L. Guadagno et al., “Development of epoxy mixtures for application in aeronautics and aerospace,” RSC Adv., vol. 4, no. 30, pp. 15474–15488, 2014.
- [14] I. M. De Rosa, F. Sarasini, M. S. Sarto, and S. Member, “EMC Impact of Advanced Carbon Fiber / Carbon Nanotube Reinforced Composites for Next-Generation Aerospace Applications,” vol. 50, no. 3, pp. 556–563, 2008.
- [15] S. Greco, A. Tamburrano, A. D’Aloia, R. Mufatti, and M. S. Sarto, “Shielding effectiveness properties of carbon-fiber reinforced composite for HIRF applications,” IEEE Int. Symp. Electromagn. Compat., pp. 1–6, 2012.
- [16] N. Abdelal, “Electromagnetic interference shielding of stitched carbon fiber composites,” J. Ind. Text., pp. 1–18, 2018.
- [17] D. Munalli, G. Dimitrakis, D. Chronopoulos, S. Greedy, and A. Long, “Electromagnetic shielding effectiveness of carbon fibre reinforced composites,” Compos. Part B Eng., vol. 173, no. December 2018, p. 106906, 2019.
- [18] I. M. De Rosa, R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, “Electromagnetic Design and Realization of Innovative Fiber-Reinforced Broad-Band Absorbing Screens,” IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 700–707, Aug. 2009.
- [19] A. L. Bogorad, M. P. Deeter, K. A. August, G. Doorley, J. J. Likar, and R. Herschitz, “Shielding Effectiveness and Closeout Methods for Composite Spacecraft Structural Panels,” IEEE Trans. Electromagn. Compat., vol. 50, no. 3, pp. 547–555, Aug. 2008.
- [20] J. Wang, B. Zhou, L. Shi, C. Gao, and B. Chen, “Analyzing the electromagnetic performances of composite materials with the FDTD method,” IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2646–2654, 2013.
- [21] R. W. Evans, “Design Guidelines for Shielding Effectiveness, Current Carrying Capability, and the Enhancement of Conductivity of Composite Materials,” NASA Contract. Rep., no. 4784, 1997.
- [22] CST, “Computer Simulation Technology, CST Studio Suite 2015, User Guide,” Darmstadt, Germany, 2019.
- [23] US Department Of Defence, “MIL-STD-464C Electromagnetic environmental effects requirements for systems,” Washington, 2010.
- [24] IEC 61000-2-9, “IEC 61000-2-9 Electromagnetic compatibility (EMC) – Part 2: Environment – Section 9: Description of HEMP environment – Radiated disturbance Basic EMC publication Compatibilité,” International Organization. 2009.
- [25] H. Oraizi and A. Abdolali, “Several theorems for reflection and transmission coefficients of plane wave incidence on planar multilayer metamaterial structures,” IET Microwaves, Antennas Propag., vol. 4, no. 11, pp. 1870–1879, 2010.
- [26] B. Kanberoğlu and A. Şükran Demirkıran, “Shielding Effectiveness of Ceramic Bodies Produced with Natural Zeolite,” Acta Phys. Pol. A, vol. 125, no. 2, pp. 642–644, Jan. 2014.
- [27] K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
- [28] S. Celozzi, R. Araneo, and G. Lovat, Electromagnetic Shielding. 2008.
- [29] P. R. Renaud and J. J. Laurin, “Shielding and scattering analysis of lossy cylindrical shells using an extended multifilament current approach,” IEEE Trans. Electromagn. Compat., vol. 41, no. 4 PART 1, pp. 320–334, 1999.
- [30] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York: Dover, 2003.
- [31] F. M. Tesche, M. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models. Canada: John Wiley & Sons, 1997.
Shielding Performance of Composite Materials Used in Air Vehicles
Year 2021,
Volume: 25 Issue: 2, 554 - 562, 15.04.2021
Baha Kanberoğlu
,
Ahmet Yahya Teşneli
Abstract
The metal skin at air vehicles provide an important shielding effectiveness against the effects of high amplitude electromagnetic waves. In recent years, the composite materials with the advantages such as being lighter, causing lower fuel consumption, are used as a replacement of metals. In this paper, electromagnetic shielding performance of composite materials in air vehicle manufacturing industry is investigated. A panel model is used to obtain the shielding performance of these composite materials. Due to the geometrical similarity of air vehicles with a cylinder, a cylindrical shell model is also considered. Analytical calculations for the interaction of an electromagnetic pulse(EMP) with composite materials are carried out for both panel and cylindrical models. Also, the panel and cylindrical models are constructed via Computer Software Technology(CST) program and analytical and simulation results are compared. There is a good agreement with the results.
Project Number
2011-50-02-028
References
- [1] B. D. Cordill, S. A. Seguin, and M. S. Ewing, “Shielding effectiveness of composite and aluminum aircraft, model and measurement comparison,” Conf. Rec. - IEEE Instrum. Meas. Technol. Conf., pp. 1408–1413, 2011.
- [2] M. A. Aziz et al., “Shielding effectiveness of composite aircraft: A reverberation chamber and virtual measurement study,” 2012 IEEE I2MTC - Int. Instrum. Meas. Technol. Conf. Proc., pp. 2775–2779, 2012.
- [3] G. G. Gutiérrez et al., “HIRF virtual testing on the C-295 aircraft: On the application of a pass/fail criterion and the FSV method,” IEEE Trans. Electromagn. Compat., vol. 56, no. 4, pp. 854–863, 2014.
- [4] M. H. Vogel, “Impact of lightning and high-intensity radiated fields on cables in aircraft,” IEEE Electromagn. Compat. Mag., vol. 3, no. 2, pp. 56–61, 2014.
- [5] A. Jazzar, E. Clavel, G. Meunier, and E. Vialardi, “Study of lightning effects on aircraft with predominately composite structures,” IEEE Trans. Electromagn. Compat., vol. 56, no. 3, pp. 675–682, 2014.
- [6] L. Huang, C. Gao, F. Guo, and C. Sun, “Lightning Indirect Effects on Helicopter: Numerical Simulation and Experiment Validation,” IEEE Trans. Electromagn. Compat., vol. 59, no. 4, pp. 1171–1179, 2017.
- [7] R. R. Nunes and J. Schuur, “Investigation on the propagation and coupling in aircraft using absorbing films,” IEEE Int. Symp. Electromagn. Compat., vol. 2015-Septm, pp. 322–327, 2015.
- [8] M. R. Cabello et al., “SIVA UAV: A Case Study for the EMC Analysis of Composite Air Vehicles,” IEEE Trans. Electromagn. Compat., vol. 59, no. 4, pp. 1103–1113, 2017.
- [9] V. P. Bui, W. Thitsartarn, E. X. Liu, J. Y. C. Chuan, and E. K. Chua, “EM Performance of Conductive Composite Laminate Made of Nanostructured Materials for Aerospace Application,” IEEE Trans. Electromagn. Compat., vol. 57, no. 5, pp. 1139–1148, 2015.
- [10] B. Kanberoglu, M. . Hilmi Nişanci, and A. Şükran Demirkiran, “Electromagnetic characterization of ceramic material produced with natural zeolite,” Mater. Sci. Semicond. Process., vol. 38, pp. 352–356, 2015.
- [11] M. D’Amore, D. A. Lampasi, M. S. Sarto, A. Tamburrano, V. De Santis, and M. Feliziani, “Optimal design of multifunctional transparent shields against radio frequency electromagnetic fields,” Electromagn. Compat. Symp. Adelaide 2009, EMCSA 2009 - Symp. Proc., pp. 81–86, 2009.
- [12] Y. Corredores, P. Besnier, X. Castel, J. Sol, C. Dupeyrat, and P. Foutrel, “Adjustment of Shielding Effectiveness, Optical Transmission, and Sheet Resistance of Conducting Films Deposited on Glass Substrates,” IEEE Trans. Electromagn. Compat., vol. 59, no. 4, pp. 1070–1078, 2017.
- [13] L. Guadagno et al., “Development of epoxy mixtures for application in aeronautics and aerospace,” RSC Adv., vol. 4, no. 30, pp. 15474–15488, 2014.
- [14] I. M. De Rosa, F. Sarasini, M. S. Sarto, and S. Member, “EMC Impact of Advanced Carbon Fiber / Carbon Nanotube Reinforced Composites for Next-Generation Aerospace Applications,” vol. 50, no. 3, pp. 556–563, 2008.
- [15] S. Greco, A. Tamburrano, A. D’Aloia, R. Mufatti, and M. S. Sarto, “Shielding effectiveness properties of carbon-fiber reinforced composite for HIRF applications,” IEEE Int. Symp. Electromagn. Compat., pp. 1–6, 2012.
- [16] N. Abdelal, “Electromagnetic interference shielding of stitched carbon fiber composites,” J. Ind. Text., pp. 1–18, 2018.
- [17] D. Munalli, G. Dimitrakis, D. Chronopoulos, S. Greedy, and A. Long, “Electromagnetic shielding effectiveness of carbon fibre reinforced composites,” Compos. Part B Eng., vol. 173, no. December 2018, p. 106906, 2019.
- [18] I. M. De Rosa, R. Mancinelli, F. Sarasini, M. S. Sarto, and A. Tamburrano, “Electromagnetic Design and Realization of Innovative Fiber-Reinforced Broad-Band Absorbing Screens,” IEEE Trans. Electromagn. Compat., vol. 51, no. 3, pp. 700–707, Aug. 2009.
- [19] A. L. Bogorad, M. P. Deeter, K. A. August, G. Doorley, J. J. Likar, and R. Herschitz, “Shielding Effectiveness and Closeout Methods for Composite Spacecraft Structural Panels,” IEEE Trans. Electromagn. Compat., vol. 50, no. 3, pp. 547–555, Aug. 2008.
- [20] J. Wang, B. Zhou, L. Shi, C. Gao, and B. Chen, “Analyzing the electromagnetic performances of composite materials with the FDTD method,” IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2646–2654, 2013.
- [21] R. W. Evans, “Design Guidelines for Shielding Effectiveness, Current Carrying Capability, and the Enhancement of Conductivity of Composite Materials,” NASA Contract. Rep., no. 4784, 1997.
- [22] CST, “Computer Simulation Technology, CST Studio Suite 2015, User Guide,” Darmstadt, Germany, 2019.
- [23] US Department Of Defence, “MIL-STD-464C Electromagnetic environmental effects requirements for systems,” Washington, 2010.
- [24] IEC 61000-2-9, “IEC 61000-2-9 Electromagnetic compatibility (EMC) – Part 2: Environment – Section 9: Description of HEMP environment – Radiated disturbance Basic EMC publication Compatibilité,” International Organization. 2009.
- [25] H. Oraizi and A. Abdolali, “Several theorems for reflection and transmission coefficients of plane wave incidence on planar multilayer metamaterial structures,” IET Microwaves, Antennas Propag., vol. 4, no. 11, pp. 1870–1879, 2010.
- [26] B. Kanberoğlu and A. Şükran Demirkıran, “Shielding Effectiveness of Ceramic Bodies Produced with Natural Zeolite,” Acta Phys. Pol. A, vol. 125, no. 2, pp. 642–644, Jan. 2014.
- [27] K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
- [28] S. Celozzi, R. Araneo, and G. Lovat, Electromagnetic Shielding. 2008.
- [29] P. R. Renaud and J. J. Laurin, “Shielding and scattering analysis of lossy cylindrical shells using an extended multifilament current approach,” IEEE Trans. Electromagn. Compat., vol. 41, no. 4 PART 1, pp. 320–334, 1999.
- [30] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York: Dover, 2003.
- [31] F. M. Tesche, M. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models. Canada: John Wiley & Sons, 1997.