Research Article
BibTex RIS Cite
Year 2021, Volume: 25 Issue: 3, 774 - 787, 30.06.2021
https://doi.org/10.16984/saufenbilder.806916

Abstract

References

  • [1] T.E. Antoine, S.R. Hadigal, Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes., Journal of Immunology. 196 (2016) 4566–4575. https://doi.org/doi: 10.4049/jimmunol.1502373.
  • [2] D. Garibo, H.A. Borbón-Nuñez, J.N.D. de León, E. García Mendoza, I. Estrada, Y. Toledano-Magaña, H. Tiznado, M. OvalleMarroquin, A.G. Soto-Ramos, A. Blanco, J.A. Rodríguez, O.A. Romo, L.A. ChávezAlmazán, A. Susarrey-Arce, Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit highantimicrobial activity, Scientific Reports. 10 (2020) 1–11. https://doi.org/10.1038/s41598-020- 69606-7.
  • [3] H. Khadri, M. Alzohairy, A. Janardhan, A.P. Kumar, G. Narasimha, Green Synthesis of Silver Nanoparticles with High Fungicidal Activity from Olive Seed Extract, Advances in Nanoparticles. 2 (2013) 241–246. https://doi.org/http://dx.doi.org/10.4236/a np.2013.23034.
  • [4] P. Mohanpuria, Æ.N.K. Rana, Biosynthesis of nanoparticles : technological concepts and future applications, (2008) 507–517. https://doi.org/10.1007/s11051-007-9275- x.
  • [5] H.J. Prabu, I. Johnson, ScienceDirect Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata , Cymbopogon citronella , Solanum verbascifolium and Tylophora ovata, Karbala International Journal of Modern Science. 1 (2015) 237–246. https://doi.org/10.1016/j.kijoms.2015.12.0 03.
  • [6] A. Khatoon, F. Khan, N. Ahmad, S. Shaikh, Silver nanoparticles from leaf extract of Mentha piperita : Eco-friendly synthesis and e ff ect on acetylcholinesterase activity, Life Sciences. 209 (2018) 430–434. https://doi.org/10.1016/j.lfs.2018.08.046.
  • [7] H. Padalia, P. Moteriya, S. Chanda, Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential, Arabian Journal of Chemistry. 8 (2015) 732–741. https://doi.org/10.1016/j.arabjc.2014.11.0 15.
  • [8] D. Li, B. Mathew, C. Mao, Biotemplated Synthesis of Hollow Double-Layered Core / Shell Titania / Silica Nanotubes under Ambient Conditions, Small. 8 (2012) 3691–3697. https://doi.org/10.1002/smll.201200421.
  • [9] K. Cho, J. Park, T. Osaka, S. Park, The study of antimicrobial activity and preservative effects of nanosilver ingredient, Electrochimica Acta. 51 (2005) 956–960. https://doi.org/10.1016/j.electacta.2005.04.071.
  • [10] A. Surjushe, R. Vasani, D.G. Saple, ALOE VERA: A SHORT REVIEW, Indian Journal of Dermatology. 53 (2008) 163– 166. https://doi.org/10.4103/0019- 5154.44785.
  • [11] P. Mag, A.W. Khan, S. Kotta, S.H. Ansari, R.K. Sharma, A. Kumar, J. Ali, Formulation development, optimization and evaluation of aloe vera gel for wound healing, 9 (2013) 6–10. https://doi.org/10.4103/0973- 1296.117849.
  • [12] R. Maenthaisong, N. Chaiyakunapruk, S. Niruntraporn, The efficacy of aloe vera used for burn wound healing : A systematic review, 33 (2007) 713–718. https://doi.org/10.1016/j.burns.2006.10.38 4.
  • [13] S.M. M, S. Kumar, Aloe vera their chemicals composition and applications : A review Aloe vera their chemicals composition and applications : A review, (2014).
  • [14] A.O. Dada, A.A. Inyinbor, E.I. Idu, O.M. Bello, A.P. Oluyori, T.A. Adelani-akande, A.A. Okunola, Effect of operational parameters , characterization and antibacterial studies of green synthesis of silver nanoparticles using Tithonia diversifolia, PeerJ. (2018) 1–17. https://doi.org/10.7717/peerj.5865.
  • [15] K. Logaranjan, A.J. Raiza, S.C.B. Gopinath, Y. Chen, Shape- and SizeControlled Synthesis of Silver Nanoparticles Using Aloe vera Plant Extract and Their Antimicrobial Activity, Nanoscale Research Letters. (2016). https://doi.org/10.1186/s11671-016-1725- x.
  • [16] S.P. Sivagnanam, A.T. Getachew, J.H. Choi, Green synthesis of silver nanoparticles from deoiled brown algal extract via Box-Behnken based design and their antimicrobial and sensing properties, Green Process Synth. 6 (2017) 147–160. https://doi.org/10.1515/gps-2016-0052.
  • [17] A.K. Nayak, M.S. Hasnain, J. Malakar, Development and optimization of hydroxyapatite- ofloxacin implants for possible bone delivery in osteomyelitis treatment, Curr. Drug Deliv. 10 (2013) 241–250. https://doi.org/10.2174/156720181131002 0008.
  • [18] M.S. Hasnain, S. Siddiqui, S. Rao, P. Mohanty, T. Jahan Ara, S. Beg, QbDDriven Development and Validation of a Bioanalytical LC-MS Method for Quantification of Fluoxetine in Human Plasma, Journal of Chromatographic Science. 54 (2016) 736–743. https://doi.org/10.1093/chromsci/bmv248.
  • [19] A.K. Nayak, S. Kalia, M.S. Hasnain, Optimization of aceclofenac-loaded pectinatepoly (vinyl pyrrolidone) beads by response surface methodology, Int. J. Biol. Macromol. 62 (2013) 194–202. https://doi.org/https://doi.org/10.1016/j.ijb iomac.2013.08.043.
  • [20] J. Malakar, K. Das, A.K. uma. Nayak, In situ cross-linked matrix tablets for sustained salbutamol sulfate release - formulation development by statistical optimization, Polimery w Medycynie. 44 (2014) 221–230. https://doi.org/10.3109/10837450.2011.55 7731.
  • [21] D. Raghunandan, B. Mahesh, S. Basavaraja, S. Balaji, S. Manjunath, A. Venkataraman, Microwave-assisted rapid extracellular synthesis of stable biofunctionalized silver nanoparticles from guava (Psidium guajava) leaf extract, Nanoparticle J. Res. 13 (2011) 2021–2028. https://doi.org/10.1007/s11051-010-9956- 8.
  • [22] N. Roy, A. Barik, Green Synthesis of Silver Nanoparticles from the Unexploited Weed Resources, International Journal of Nanotechnology and Applications. 4 (2010) 95–101. http://www.ripublication.com/ijna.htm.
  • [23] L. Lin, W. Wang, J. Huang, Q. Li, D. Sun, X. Yang, H. Wang, Y. N. He, Nature factory of silver nanowires: plant mediated synthesis using broth of Cassia fistula leaf, Chem. Eng. J. 162 (2010) 852–858. https://doi.org/https://doi.org/10.1016/j.cej .2010.06.023.
  • [24] S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract, Biotechnology Progress. 22 (2006) 577– 583. https://doi.org/10.1021/bp0501423.
  • [25] B. Das, S.K. Dash, D. Mandal, T. Ghosh, S. Chattopadhyay, S. Tripathy, S. Das, S.K. Dey, D. Das, S. Roy, Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage, Arabian Journal of Chemistry. 10 (2017) 862–876. https://doi.org/10.1016/j.arabjc.2015.08.0 08.
  • [26] A. Sharanappa, A.R. Shet, L.R. Patil, V.S. Hombalimath, S. Kadapure, Biosynthesis of silver nanoparticles using citrus sinensis peel extract and their application as antibacterial agent, International Journal of Research in Pharmaceutical Sciences. 11 (2020) 4726–4732. https://doi.org/10.26452/ijrps.v11i3.2762.
  • [27] D. MubarakAli, N. Thajuddin, K. Jeganathan, M. Gunasekaran, Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens, Colloids and Surfaces B: Biointerfaces. 85 (2011) 360–365. https://doi.org/10.1016/j.colsurfb.2011.03. 009.
  • [28] V.S. Ramkumar, A. Pugazhendhi, K. Gopalakrishnan, P. Sivagurunathan, G.D. Saratale, T.N.B. Dung, E. Kannapiran, Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties, Biotechnology Reports. 14 (2017) 1–7. https://doi.org/10.1016/j.btre.2017.02.001.
  • [29] N. Durán, G. Nakazato, A.B. Seabra, Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments, Applied Microbiology and Biotechnology. 100 (2016) 6555–6570. https://doi.org/10.1007/s00253-016-7657- 7.
  • [30] R.A. Bapat, T. V. Chaubal, C.P. Joshi, P.R. Bapat, H. Choudhury, M. Pandey, B. Gorain, P. Kesharwani, An overview of application of silver nanoparticles for biomaterials in dentistry, Materials Science and Engineering C. 91 (2018) 881–898. https://doi.org/10.1016/j.msec.2018.05.06 9.
  • [31] P.K. Sahu, D.D. Giri, R. Singh, P. Pandey, S. Gupta, A.K. Shrivastava, A. Kumar, K.D. Pandey, Therapeutic and Medicinal Uses of <i>Aloe vera</i>: A Review, Pharmacology & Pharmacy. 04 (2013) 599–610. https://doi.org/10.4236/pp.2013.48086.
  • [32] H. Akbaş, A. Yıldırım, Ş. Menevşe, N. Gökşen, Antiproliferative and Antimicrobial Effects of Tris(2- hydroxyethyl)ammonium-Based Protic Ionic Liquids with Some Fatty Acids, Journal of the Institute of Science and Technology. 10 (2020) 2021–2027. https://doi.org/10.21597/jist.695018.

Optimization of the Green Synthesis of Silver Nanoparticle with Box-Behnken Design: Using Aloe Vera Plant Extract as a Reduction Agent

Year 2021, Volume: 25 Issue: 3, 774 - 787, 30.06.2021
https://doi.org/10.16984/saufenbilder.806916

Abstract

Nowadays, many of plants are used as a reduction agent in biosynthesis of silver nanoparticles. In this study, green synthesis of silver nanoparticles was aimed to optimize with Box-Behnken design. Aloe vera plant extract was utilized as a reduction agent as it is the famous natural product in field of cosmetic and skin health care. The synthesized silver nanoparticles using Aloe vera plant extract solution were optimized by Box-Behnken design due to the influence of different factors such as microwave power, time, AgNO3 concentration, and ratio of volume of Aloe vera plant extract solution to volume of AgNO3 and the percentage yield of particle formation as a response. Quadratic polynomial model was used to carry out mathematical modelling and response surface analysis was performed to determine the independent variable-response relationship. The optimized silver nanoparticles were characterized using instrumental devices like FTIR spectroscopy UV-VIS spectrophotometry. In addition, the optimized silver nanoparticles were tested for antibacterial activity on Gram positive (S. aureus, E. faecalis) and Gram negative ( P. aeruginosa, K. pneumoniae )bacteria. Briefly, the trials interpreted successful synthesis of the silver nanoparticles along with comprehension of the related factors affecting their quality characteristics and remarkably developed antibacterial activity as helpful impact.

References

  • [1] T.E. Antoine, S.R. Hadigal, Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes., Journal of Immunology. 196 (2016) 4566–4575. https://doi.org/doi: 10.4049/jimmunol.1502373.
  • [2] D. Garibo, H.A. Borbón-Nuñez, J.N.D. de León, E. García Mendoza, I. Estrada, Y. Toledano-Magaña, H. Tiznado, M. OvalleMarroquin, A.G. Soto-Ramos, A. Blanco, J.A. Rodríguez, O.A. Romo, L.A. ChávezAlmazán, A. Susarrey-Arce, Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit highantimicrobial activity, Scientific Reports. 10 (2020) 1–11. https://doi.org/10.1038/s41598-020- 69606-7.
  • [3] H. Khadri, M. Alzohairy, A. Janardhan, A.P. Kumar, G. Narasimha, Green Synthesis of Silver Nanoparticles with High Fungicidal Activity from Olive Seed Extract, Advances in Nanoparticles. 2 (2013) 241–246. https://doi.org/http://dx.doi.org/10.4236/a np.2013.23034.
  • [4] P. Mohanpuria, Æ.N.K. Rana, Biosynthesis of nanoparticles : technological concepts and future applications, (2008) 507–517. https://doi.org/10.1007/s11051-007-9275- x.
  • [5] H.J. Prabu, I. Johnson, ScienceDirect Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata , Cymbopogon citronella , Solanum verbascifolium and Tylophora ovata, Karbala International Journal of Modern Science. 1 (2015) 237–246. https://doi.org/10.1016/j.kijoms.2015.12.0 03.
  • [6] A. Khatoon, F. Khan, N. Ahmad, S. Shaikh, Silver nanoparticles from leaf extract of Mentha piperita : Eco-friendly synthesis and e ff ect on acetylcholinesterase activity, Life Sciences. 209 (2018) 430–434. https://doi.org/10.1016/j.lfs.2018.08.046.
  • [7] H. Padalia, P. Moteriya, S. Chanda, Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential, Arabian Journal of Chemistry. 8 (2015) 732–741. https://doi.org/10.1016/j.arabjc.2014.11.0 15.
  • [8] D. Li, B. Mathew, C. Mao, Biotemplated Synthesis of Hollow Double-Layered Core / Shell Titania / Silica Nanotubes under Ambient Conditions, Small. 8 (2012) 3691–3697. https://doi.org/10.1002/smll.201200421.
  • [9] K. Cho, J. Park, T. Osaka, S. Park, The study of antimicrobial activity and preservative effects of nanosilver ingredient, Electrochimica Acta. 51 (2005) 956–960. https://doi.org/10.1016/j.electacta.2005.04.071.
  • [10] A. Surjushe, R. Vasani, D.G. Saple, ALOE VERA: A SHORT REVIEW, Indian Journal of Dermatology. 53 (2008) 163– 166. https://doi.org/10.4103/0019- 5154.44785.
  • [11] P. Mag, A.W. Khan, S. Kotta, S.H. Ansari, R.K. Sharma, A. Kumar, J. Ali, Formulation development, optimization and evaluation of aloe vera gel for wound healing, 9 (2013) 6–10. https://doi.org/10.4103/0973- 1296.117849.
  • [12] R. Maenthaisong, N. Chaiyakunapruk, S. Niruntraporn, The efficacy of aloe vera used for burn wound healing : A systematic review, 33 (2007) 713–718. https://doi.org/10.1016/j.burns.2006.10.38 4.
  • [13] S.M. M, S. Kumar, Aloe vera their chemicals composition and applications : A review Aloe vera their chemicals composition and applications : A review, (2014).
  • [14] A.O. Dada, A.A. Inyinbor, E.I. Idu, O.M. Bello, A.P. Oluyori, T.A. Adelani-akande, A.A. Okunola, Effect of operational parameters , characterization and antibacterial studies of green synthesis of silver nanoparticles using Tithonia diversifolia, PeerJ. (2018) 1–17. https://doi.org/10.7717/peerj.5865.
  • [15] K. Logaranjan, A.J. Raiza, S.C.B. Gopinath, Y. Chen, Shape- and SizeControlled Synthesis of Silver Nanoparticles Using Aloe vera Plant Extract and Their Antimicrobial Activity, Nanoscale Research Letters. (2016). https://doi.org/10.1186/s11671-016-1725- x.
  • [16] S.P. Sivagnanam, A.T. Getachew, J.H. Choi, Green synthesis of silver nanoparticles from deoiled brown algal extract via Box-Behnken based design and their antimicrobial and sensing properties, Green Process Synth. 6 (2017) 147–160. https://doi.org/10.1515/gps-2016-0052.
  • [17] A.K. Nayak, M.S. Hasnain, J. Malakar, Development and optimization of hydroxyapatite- ofloxacin implants for possible bone delivery in osteomyelitis treatment, Curr. Drug Deliv. 10 (2013) 241–250. https://doi.org/10.2174/156720181131002 0008.
  • [18] M.S. Hasnain, S. Siddiqui, S. Rao, P. Mohanty, T. Jahan Ara, S. Beg, QbDDriven Development and Validation of a Bioanalytical LC-MS Method for Quantification of Fluoxetine in Human Plasma, Journal of Chromatographic Science. 54 (2016) 736–743. https://doi.org/10.1093/chromsci/bmv248.
  • [19] A.K. Nayak, S. Kalia, M.S. Hasnain, Optimization of aceclofenac-loaded pectinatepoly (vinyl pyrrolidone) beads by response surface methodology, Int. J. Biol. Macromol. 62 (2013) 194–202. https://doi.org/https://doi.org/10.1016/j.ijb iomac.2013.08.043.
  • [20] J. Malakar, K. Das, A.K. uma. Nayak, In situ cross-linked matrix tablets for sustained salbutamol sulfate release - formulation development by statistical optimization, Polimery w Medycynie. 44 (2014) 221–230. https://doi.org/10.3109/10837450.2011.55 7731.
  • [21] D. Raghunandan, B. Mahesh, S. Basavaraja, S. Balaji, S. Manjunath, A. Venkataraman, Microwave-assisted rapid extracellular synthesis of stable biofunctionalized silver nanoparticles from guava (Psidium guajava) leaf extract, Nanoparticle J. Res. 13 (2011) 2021–2028. https://doi.org/10.1007/s11051-010-9956- 8.
  • [22] N. Roy, A. Barik, Green Synthesis of Silver Nanoparticles from the Unexploited Weed Resources, International Journal of Nanotechnology and Applications. 4 (2010) 95–101. http://www.ripublication.com/ijna.htm.
  • [23] L. Lin, W. Wang, J. Huang, Q. Li, D. Sun, X. Yang, H. Wang, Y. N. He, Nature factory of silver nanowires: plant mediated synthesis using broth of Cassia fistula leaf, Chem. Eng. J. 162 (2010) 852–858. https://doi.org/https://doi.org/10.1016/j.cej .2010.06.023.
  • [24] S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract, Biotechnology Progress. 22 (2006) 577– 583. https://doi.org/10.1021/bp0501423.
  • [25] B. Das, S.K. Dash, D. Mandal, T. Ghosh, S. Chattopadhyay, S. Tripathy, S. Das, S.K. Dey, D. Das, S. Roy, Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage, Arabian Journal of Chemistry. 10 (2017) 862–876. https://doi.org/10.1016/j.arabjc.2015.08.0 08.
  • [26] A. Sharanappa, A.R. Shet, L.R. Patil, V.S. Hombalimath, S. Kadapure, Biosynthesis of silver nanoparticles using citrus sinensis peel extract and their application as antibacterial agent, International Journal of Research in Pharmaceutical Sciences. 11 (2020) 4726–4732. https://doi.org/10.26452/ijrps.v11i3.2762.
  • [27] D. MubarakAli, N. Thajuddin, K. Jeganathan, M. Gunasekaran, Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens, Colloids and Surfaces B: Biointerfaces. 85 (2011) 360–365. https://doi.org/10.1016/j.colsurfb.2011.03. 009.
  • [28] V.S. Ramkumar, A. Pugazhendhi, K. Gopalakrishnan, P. Sivagurunathan, G.D. Saratale, T.N.B. Dung, E. Kannapiran, Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties, Biotechnology Reports. 14 (2017) 1–7. https://doi.org/10.1016/j.btre.2017.02.001.
  • [29] N. Durán, G. Nakazato, A.B. Seabra, Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments, Applied Microbiology and Biotechnology. 100 (2016) 6555–6570. https://doi.org/10.1007/s00253-016-7657- 7.
  • [30] R.A. Bapat, T. V. Chaubal, C.P. Joshi, P.R. Bapat, H. Choudhury, M. Pandey, B. Gorain, P. Kesharwani, An overview of application of silver nanoparticles for biomaterials in dentistry, Materials Science and Engineering C. 91 (2018) 881–898. https://doi.org/10.1016/j.msec.2018.05.06 9.
  • [31] P.K. Sahu, D.D. Giri, R. Singh, P. Pandey, S. Gupta, A.K. Shrivastava, A. Kumar, K.D. Pandey, Therapeutic and Medicinal Uses of <i>Aloe vera</i>: A Review, Pharmacology & Pharmacy. 04 (2013) 599–610. https://doi.org/10.4236/pp.2013.48086.
  • [32] H. Akbaş, A. Yıldırım, Ş. Menevşe, N. Gökşen, Antiproliferative and Antimicrobial Effects of Tris(2- hydroxyethyl)ammonium-Based Protic Ionic Liquids with Some Fatty Acids, Journal of the Institute of Science and Technology. 10 (2020) 2021–2027. https://doi.org/10.21597/jist.695018.
There are 32 citations in total.

Details

Primary Language English
Subjects Engineering, Chemical Engineering, Material Production Technologies
Journal Section Research Articles
Authors

Nazan Gökşen 0000-0001-5269-1067

Özlem Kaplan 0000-0002-3052-4556

Publication Date June 30, 2021
Submission Date October 8, 2020
Acceptance Date May 2, 2021
Published in Issue Year 2021 Volume: 25 Issue: 3

Cite

APA Gökşen, N., & Kaplan, Ö. (2021). Optimization of the Green Synthesis of Silver Nanoparticle with Box-Behnken Design: Using Aloe Vera Plant Extract as a Reduction Agent. Sakarya University Journal of Science, 25(3), 774-787. https://doi.org/10.16984/saufenbilder.806916
AMA Gökşen N, Kaplan Ö. Optimization of the Green Synthesis of Silver Nanoparticle with Box-Behnken Design: Using Aloe Vera Plant Extract as a Reduction Agent. SAUJS. June 2021;25(3):774-787. doi:10.16984/saufenbilder.806916
Chicago Gökşen, Nazan, and Özlem Kaplan. “Optimization of the Green Synthesis of Silver Nanoparticle With Box-Behnken Design: Using Aloe Vera Plant Extract As a Reduction Agent”. Sakarya University Journal of Science 25, no. 3 (June 2021): 774-87. https://doi.org/10.16984/saufenbilder.806916.
EndNote Gökşen N, Kaplan Ö (June 1, 2021) Optimization of the Green Synthesis of Silver Nanoparticle with Box-Behnken Design: Using Aloe Vera Plant Extract as a Reduction Agent. Sakarya University Journal of Science 25 3 774–787.
IEEE N. Gökşen and Ö. Kaplan, “Optimization of the Green Synthesis of Silver Nanoparticle with Box-Behnken Design: Using Aloe Vera Plant Extract as a Reduction Agent”, SAUJS, vol. 25, no. 3, pp. 774–787, 2021, doi: 10.16984/saufenbilder.806916.
ISNAD Gökşen, Nazan - Kaplan, Özlem. “Optimization of the Green Synthesis of Silver Nanoparticle With Box-Behnken Design: Using Aloe Vera Plant Extract As a Reduction Agent”. Sakarya University Journal of Science 25/3 (June 2021), 774-787. https://doi.org/10.16984/saufenbilder.806916.
JAMA Gökşen N, Kaplan Ö. Optimization of the Green Synthesis of Silver Nanoparticle with Box-Behnken Design: Using Aloe Vera Plant Extract as a Reduction Agent. SAUJS. 2021;25:774–787.
MLA Gökşen, Nazan and Özlem Kaplan. “Optimization of the Green Synthesis of Silver Nanoparticle With Box-Behnken Design: Using Aloe Vera Plant Extract As a Reduction Agent”. Sakarya University Journal of Science, vol. 25, no. 3, 2021, pp. 774-87, doi:10.16984/saufenbilder.806916.
Vancouver Gökşen N, Kaplan Ö. Optimization of the Green Synthesis of Silver Nanoparticle with Box-Behnken Design: Using Aloe Vera Plant Extract as a Reduction Agent. SAUJS. 2021;25(3):774-87.

Sakarya University Journal of Science (SAUJS)