1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution", The Astrophysical Journal, vol. 607, no. 2, pp. 665-687, 2004." />
Research Article
BibTex RIS Cite

GUP-corrected ΛCDM cosmology

Year 2022, Volume: 26 Issue: 3, 501 - 509, 30.06.2022
https://doi.org/10.16984/saufenbilder.1033550

Abstract

In this study, we investigate the effect of the generalized uncertainty principle on the ΛCDM cosmological model. Using quantum corrected Unruh effect and Verlinde’s entropic gravity idea, we find Planck-scale corrected Friedmann equations with a cosmological constant. These results modify the ΛCDM cosmology.

References

  • [1] S. Perlmutter et al., "Discovery of a supernova explosion at half the age of the Universe", Nature (London), vol. 391, pp. 51-54, 1998.
  • [2] S. Perlmutter et al., "Measurements of Ω and Λ from 42 High-Redshift Supernovae", The Astrophysical Journal, vol. 517, no. 2, pp. 565-586, 1999.
  • [3] G. Riess et al., "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant", The Astrophysical Journal, vol. 116, no. 3, pp. 1009-1038, 1998.
  • [4] G. Riess et al., "Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution", The Astrophysical Journal, vol. 607, no. 2, pp. 665-687, 2004.
  • [5] J. Frieman, M. Turner, and D. Huterer, "Dark Energy and the Accelerating Universe", Annual Review of Astronomy and Astrophysics., vol. 46, pp. 385-432, 2008.
  • [6] T. Padmanabhan, "Dark Energy and its Implications for Gravity", Advanced Science Letters, vol. 2, no. 2, pp. 174-183, 2009.
  • [7] E. Verlinde, "On the origin of gravity and the laws of Newton", Journal of High Energy Physics, vol. 04, pp. 029, 2011.
  • [8] E. Verlinde, "Emergent Gravity and the Dark Universe", SciPost Physics, vol. 2, pp. 016, 2017.
  • [9] J. D. Bekenstein, "Black Holes and Entropy", Physical Review D, vol. 7, no. 8, pp. 2333-2346, 1973.
  • [10] S. W. Hawking, "Black hole explosions?", Nature, vol. 248, pp. 30-31, 1974.
  • [11] S. W. Hawking, "Particle creation by black holes", Communications in Mathematical Physics, vol. 43, pp. 199-220, 1975.
  • [12] M. Ho, D. Minic, and Y. J. Ng, "Cold dark matter with MOND scaling", Physics Letters B, vol. 693, pp. 567-570, 2010.
  • [13] T. Wang, "Modified entropic gravity revisited", Science China Physics, Mechanics & Astronomy, vol. 57, pp. 1623–1629, 2014.
  • [14] A. Sheykhi and S. H. Hendi, "Power-law entropic corrections to Newton’s law and Friedmann equations", Physical Review D, vol. 84, pp. 44023, 2011.
  • [15] A. Sheykhi and S. K. Rezazadeh, "Einstein Equations and MOND Theory from Debye Entropic Gravity", Journal of Cosmology and Astroparticle Physics, vol. 10, pp. 012, 2012.
  • [16] E. Dil, "q-Deformed Einstein equations", Canadian Journal of Physics, vol. 93, pp. 1274-1278, 2015.
  • [17] H. Moradpour and A. Sheykhi, "From the Komar Mass and Entropic Force Scenarios to the Einstein Field Equations on the Ads Brane", International Journal of Theoretical Physics, vol. 55, pp. 1145-1155, 2016.
  • [18] M. Senay and S. Kibaroğlu, "q-deformed Einstein equations from entropic force", International Journal of Modern Physics A, vol. 33, no. 36, pp. 1850218, 2018.
  • [19] S. Kibaroğlu and M. Senay, "Effects of bosonic and fermionic q-deformation on the entropic gravity", Modern Physics Letters A, vol. 34, no. 31, pp. 1950249, 2019.
  • [20] S. Kibaroğlu, "Generalized entropic gravity from modified Unruh temperature", International Journal of Modern Physics A, vol. 34, no. 22, pp. 1950119, 2019.
  • [21] R. G. Cai, L. M. Cao, and N. Ohta, "Friedmann equations from entropic force", Physical Review D, vol. 81, pp. 61501, 2010.
  • [22] Y. F. Cai, J. Liu, and H. Li, "Entropic cosmology: A unified model of inflation and late-time acceleration", Physics Letters B, vol. 690, pp. 213-219, 2010.
  • [23] A. Sheykhi, "Entropic corrections to Friedmann equations", Physical Review D, vol. 81, pp. 104011, 2010.
  • [24] H. Wei, "Cosmological constraints on the modified entropic force model", Physics Letters B, vol. 692, pp. 167-175, 2010.
  • [25] Y. F. Cai and E. N. Saridakis, "Inflation in entropic cosmology: Primordial perturbations and non-Gaussianities", Physics Letters B, vol. 697, pp. 280-287, 2011.
  • [26] N. Komatsu and S. Kimura, "Non-adiabatic-like accelerated expansion of the late universe in entropic cosmology", Physical Review D, vol. 87, pp. 43531, 2013.
  • [27] N. Komatsu and S. Kimura, "Entropic cosmology for a generalized black-hole entropy", Physical Review D, vol. 88, pp. 83534, 2013.
  • [28] A. Awad and A. F. Ali, "Planck-scale corrections to Friedmann equation", Central European Journal of Physics, vol. 12, pp. 245-255, 2014.
  • [29] A. Sheykhi, "Modified Friedmann equations from Tsallis entropy", Physics Letters B, vol. 785, pp. 118-126, 2018.
  • [30] S. Kibaroğlu and M. Senay, "Friedmann equations for deformed entropic gravity", International Journal of Modern Physics D, vol. 29, no. 06, pp. 2050042, 2020.
  • [31] A. Kempf, G. Mangano, and R. B. Mann, "Hilbert space representation of the minimal length uncertainty relation", Physical Review D, vol. 52, no. 2, pp. 1108-1118, 1995.
  • [32] L. J. Garay, "Quantum gravity and minimum length", International Journal of Modern Physics A, vol. 10, no. 02, pp. 145-165, 1995.
  • [33] F. Scardigli, "Some heuristic semi-classical derivations of the Planck length, the Hawking effect and the Unruh effect", Nuovo Cimento B, vol. 110, pp. 1029-1034, 1995.
  • [34] F. Scardigli, "Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment", Physics Letters B, vol. 452, pp. 39-44, 1999.
  • [35] S. Kalyana Rama, "Some consequences of the generalised uncertainty principle: statistical mechanical, cosmological, and varying speed of light", Physics Letters B, vol. 519, pp. 103-110, 2001.
  • [36] L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, "Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem", Physical Review D, vol. 65, pp. 125028, 2002.
  • [37] S. Hossenfelder, "Minimal Length Scale Scenarios for Quantum Gravity", Living Reviews in Relativity., vol. 16, pp. 2, 2013.
  • [38] J. Gine, "Hawking effect and Unruh effect from the uncertainty principle", Europhysics Letters., vol. 121, no. 1, pp. 10001, 2018.
  • [39] F. Scardigli, M. Blasone, G. Luciano, and R. Casadio, "Modified Unruh effect from generalized uncertainty principle", The European Physical Journal C, vol. 78, pp. 728, 2018.
  • [40] B. Bolen and M. Cavaglia, "(anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle", General Relativity and Gravitation, vol. 37, pp. 1255-1262, 2005.
  • [41] C. Bambi and F.R. Urban, "Natural extension of the generalized uncertainty principle", Classical and Quantum Gravity, vol. 25, no. 9, pp. 095006, 2008.
  • [42] S. Mignemi, "Extended Uncertainty Principle and The Geometry of (anti)-de Sitter Space", Modern Physics Letters A, vol. 25, no. 20, pp. 1697-1703, 2010.
  • [43] W. S. Chung and H. Hassanabadi, "Quantum mechanics on (anti)-de Sitter background", Modern Physics Letters A, vol. 32, no. 26, pp. 1750138, 2017.
  • [44] L. Bergström and A. Goobar, Cosmology and Particle Astrophysics, 2nd ed., Berlin, Springer, 2006.
  • [45] G. Lambiase and F. Scardigli, "Lorentz violation and generalized uncertainty principle", Physical Review D, vol. 97, pp. 075003, 2018.
  • [46] Y. C. Ong, "Generalized uncertainty principle, black holes, and white dwarfs: a tale of two infinities", Journal of Cosmology and Astroparticle Physics, vol. 2018, pp. 015, 2018.
  • [47] T. Kanazawa, G. Lambiase, G. Vilasi, and A. Yoshioka, "Noncommutative Schwarzschild geometry and generalized uncertainty principle", The European Physical Journal C, vol. 79, pp. 95, 2019.
  • [48] L. Buoninfante, G. G. Luciano, and L. Petruzziello, "Generalized uncertainty principle and corpuscular gravity", The European Physical Journal C, vol. 79, pp. 663, 2019.
  • [49] L. Buoninfante, G. G. Luciano, and L. Petruzziello, F. Scardigli, "Bekenstein bound and uncertainty relations", Physics Letters B, vol. 824, pp. 136818, 2022.
Year 2022, Volume: 26 Issue: 3, 501 - 509, 30.06.2022
https://doi.org/10.16984/saufenbilder.1033550

Abstract

References

  • [1] S. Perlmutter et al., "Discovery of a supernova explosion at half the age of the Universe", Nature (London), vol. 391, pp. 51-54, 1998.
  • [2] S. Perlmutter et al., "Measurements of Ω and Λ from 42 High-Redshift Supernovae", The Astrophysical Journal, vol. 517, no. 2, pp. 565-586, 1999.
  • [3] G. Riess et al., "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant", The Astrophysical Journal, vol. 116, no. 3, pp. 1009-1038, 1998.
  • [4] G. Riess et al., "Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution", The Astrophysical Journal, vol. 607, no. 2, pp. 665-687, 2004.
  • [5] J. Frieman, M. Turner, and D. Huterer, "Dark Energy and the Accelerating Universe", Annual Review of Astronomy and Astrophysics., vol. 46, pp. 385-432, 2008.
  • [6] T. Padmanabhan, "Dark Energy and its Implications for Gravity", Advanced Science Letters, vol. 2, no. 2, pp. 174-183, 2009.
  • [7] E. Verlinde, "On the origin of gravity and the laws of Newton", Journal of High Energy Physics, vol. 04, pp. 029, 2011.
  • [8] E. Verlinde, "Emergent Gravity and the Dark Universe", SciPost Physics, vol. 2, pp. 016, 2017.
  • [9] J. D. Bekenstein, "Black Holes and Entropy", Physical Review D, vol. 7, no. 8, pp. 2333-2346, 1973.
  • [10] S. W. Hawking, "Black hole explosions?", Nature, vol. 248, pp. 30-31, 1974.
  • [11] S. W. Hawking, "Particle creation by black holes", Communications in Mathematical Physics, vol. 43, pp. 199-220, 1975.
  • [12] M. Ho, D. Minic, and Y. J. Ng, "Cold dark matter with MOND scaling", Physics Letters B, vol. 693, pp. 567-570, 2010.
  • [13] T. Wang, "Modified entropic gravity revisited", Science China Physics, Mechanics & Astronomy, vol. 57, pp. 1623–1629, 2014.
  • [14] A. Sheykhi and S. H. Hendi, "Power-law entropic corrections to Newton’s law and Friedmann equations", Physical Review D, vol. 84, pp. 44023, 2011.
  • [15] A. Sheykhi and S. K. Rezazadeh, "Einstein Equations and MOND Theory from Debye Entropic Gravity", Journal of Cosmology and Astroparticle Physics, vol. 10, pp. 012, 2012.
  • [16] E. Dil, "q-Deformed Einstein equations", Canadian Journal of Physics, vol. 93, pp. 1274-1278, 2015.
  • [17] H. Moradpour and A. Sheykhi, "From the Komar Mass and Entropic Force Scenarios to the Einstein Field Equations on the Ads Brane", International Journal of Theoretical Physics, vol. 55, pp. 1145-1155, 2016.
  • [18] M. Senay and S. Kibaroğlu, "q-deformed Einstein equations from entropic force", International Journal of Modern Physics A, vol. 33, no. 36, pp. 1850218, 2018.
  • [19] S. Kibaroğlu and M. Senay, "Effects of bosonic and fermionic q-deformation on the entropic gravity", Modern Physics Letters A, vol. 34, no. 31, pp. 1950249, 2019.
  • [20] S. Kibaroğlu, "Generalized entropic gravity from modified Unruh temperature", International Journal of Modern Physics A, vol. 34, no. 22, pp. 1950119, 2019.
  • [21] R. G. Cai, L. M. Cao, and N. Ohta, "Friedmann equations from entropic force", Physical Review D, vol. 81, pp. 61501, 2010.
  • [22] Y. F. Cai, J. Liu, and H. Li, "Entropic cosmology: A unified model of inflation and late-time acceleration", Physics Letters B, vol. 690, pp. 213-219, 2010.
  • [23] A. Sheykhi, "Entropic corrections to Friedmann equations", Physical Review D, vol. 81, pp. 104011, 2010.
  • [24] H. Wei, "Cosmological constraints on the modified entropic force model", Physics Letters B, vol. 692, pp. 167-175, 2010.
  • [25] Y. F. Cai and E. N. Saridakis, "Inflation in entropic cosmology: Primordial perturbations and non-Gaussianities", Physics Letters B, vol. 697, pp. 280-287, 2011.
  • [26] N. Komatsu and S. Kimura, "Non-adiabatic-like accelerated expansion of the late universe in entropic cosmology", Physical Review D, vol. 87, pp. 43531, 2013.
  • [27] N. Komatsu and S. Kimura, "Entropic cosmology for a generalized black-hole entropy", Physical Review D, vol. 88, pp. 83534, 2013.
  • [28] A. Awad and A. F. Ali, "Planck-scale corrections to Friedmann equation", Central European Journal of Physics, vol. 12, pp. 245-255, 2014.
  • [29] A. Sheykhi, "Modified Friedmann equations from Tsallis entropy", Physics Letters B, vol. 785, pp. 118-126, 2018.
  • [30] S. Kibaroğlu and M. Senay, "Friedmann equations for deformed entropic gravity", International Journal of Modern Physics D, vol. 29, no. 06, pp. 2050042, 2020.
  • [31] A. Kempf, G. Mangano, and R. B. Mann, "Hilbert space representation of the minimal length uncertainty relation", Physical Review D, vol. 52, no. 2, pp. 1108-1118, 1995.
  • [32] L. J. Garay, "Quantum gravity and minimum length", International Journal of Modern Physics A, vol. 10, no. 02, pp. 145-165, 1995.
  • [33] F. Scardigli, "Some heuristic semi-classical derivations of the Planck length, the Hawking effect and the Unruh effect", Nuovo Cimento B, vol. 110, pp. 1029-1034, 1995.
  • [34] F. Scardigli, "Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment", Physics Letters B, vol. 452, pp. 39-44, 1999.
  • [35] S. Kalyana Rama, "Some consequences of the generalised uncertainty principle: statistical mechanical, cosmological, and varying speed of light", Physics Letters B, vol. 519, pp. 103-110, 2001.
  • [36] L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, "Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem", Physical Review D, vol. 65, pp. 125028, 2002.
  • [37] S. Hossenfelder, "Minimal Length Scale Scenarios for Quantum Gravity", Living Reviews in Relativity., vol. 16, pp. 2, 2013.
  • [38] J. Gine, "Hawking effect and Unruh effect from the uncertainty principle", Europhysics Letters., vol. 121, no. 1, pp. 10001, 2018.
  • [39] F. Scardigli, M. Blasone, G. Luciano, and R. Casadio, "Modified Unruh effect from generalized uncertainty principle", The European Physical Journal C, vol. 78, pp. 728, 2018.
  • [40] B. Bolen and M. Cavaglia, "(anti-)de Sitter black hole thermodynamics and the generalized uncertainty principle", General Relativity and Gravitation, vol. 37, pp. 1255-1262, 2005.
  • [41] C. Bambi and F.R. Urban, "Natural extension of the generalized uncertainty principle", Classical and Quantum Gravity, vol. 25, no. 9, pp. 095006, 2008.
  • [42] S. Mignemi, "Extended Uncertainty Principle and The Geometry of (anti)-de Sitter Space", Modern Physics Letters A, vol. 25, no. 20, pp. 1697-1703, 2010.
  • [43] W. S. Chung and H. Hassanabadi, "Quantum mechanics on (anti)-de Sitter background", Modern Physics Letters A, vol. 32, no. 26, pp. 1750138, 2017.
  • [44] L. Bergström and A. Goobar, Cosmology and Particle Astrophysics, 2nd ed., Berlin, Springer, 2006.
  • [45] G. Lambiase and F. Scardigli, "Lorentz violation and generalized uncertainty principle", Physical Review D, vol. 97, pp. 075003, 2018.
  • [46] Y. C. Ong, "Generalized uncertainty principle, black holes, and white dwarfs: a tale of two infinities", Journal of Cosmology and Astroparticle Physics, vol. 2018, pp. 015, 2018.
  • [47] T. Kanazawa, G. Lambiase, G. Vilasi, and A. Yoshioka, "Noncommutative Schwarzschild geometry and generalized uncertainty principle", The European Physical Journal C, vol. 79, pp. 95, 2019.
  • [48] L. Buoninfante, G. G. Luciano, and L. Petruzziello, "Generalized uncertainty principle and corpuscular gravity", The European Physical Journal C, vol. 79, pp. 663, 2019.
  • [49] L. Buoninfante, G. G. Luciano, and L. Petruzziello, F. Scardigli, "Bekenstein bound and uncertainty relations", Physics Letters B, vol. 824, pp. 136818, 2022.
There are 49 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Research Articles
Authors

Salih Kibaroğlu 0000-0002-8691-4959

Publication Date June 30, 2022
Submission Date December 7, 2021
Acceptance Date April 25, 2022
Published in Issue Year 2022 Volume: 26 Issue: 3

Cite

APA Kibaroğlu, S. (2022). GUP-corrected ΛCDM cosmology. Sakarya University Journal of Science, 26(3), 501-509. https://doi.org/10.16984/saufenbilder.1033550
AMA Kibaroğlu S. GUP-corrected ΛCDM cosmology. SAUJS. June 2022;26(3):501-509. doi:10.16984/saufenbilder.1033550
Chicago Kibaroğlu, Salih. “GUP-Corrected ΛCDM Cosmology”. Sakarya University Journal of Science 26, no. 3 (June 2022): 501-9. https://doi.org/10.16984/saufenbilder.1033550.
EndNote Kibaroğlu S (June 1, 2022) GUP-corrected ΛCDM cosmology. Sakarya University Journal of Science 26 3 501–509.
IEEE S. Kibaroğlu, “GUP-corrected ΛCDM cosmology”, SAUJS, vol. 26, no. 3, pp. 501–509, 2022, doi: 10.16984/saufenbilder.1033550.
ISNAD Kibaroğlu, Salih. “GUP-Corrected ΛCDM Cosmology”. Sakarya University Journal of Science 26/3 (June 2022), 501-509. https://doi.org/10.16984/saufenbilder.1033550.
JAMA Kibaroğlu S. GUP-corrected ΛCDM cosmology. SAUJS. 2022;26:501–509.
MLA Kibaroğlu, Salih. “GUP-Corrected ΛCDM Cosmology”. Sakarya University Journal of Science, vol. 26, no. 3, 2022, pp. 501-9, doi:10.16984/saufenbilder.1033550.
Vancouver Kibaroğlu S. GUP-corrected ΛCDM cosmology. SAUJS. 2022;26(3):501-9.